
File Systems 1

Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– alternatively, a file may have some internal structure, e.g., a data may
consist of sequence of numbered records

– file may change size over time

– file has associated meta-data (attributes), in addition to the file name

∗ examples: owner, access controls, file type, creation and access
timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed, . . .

CS350 Operating Systems Winter 2005

File Systems 2

File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in
subsequent operations to identify the file. (Why is this done?)

• read, write

– must specify which file to read, which part of the file to read, and where to
put the data that has been read (similar for write).

– often, file position is implicit (why?)

• seek

• get/set file attributes, e.g., Unix fstat, chmod

CS350 Operating Systems Winter 2005

File Systems 3

File Read

�����
�����
�����
�����

�����
�����
�����
����� �����

�����
�����

�����
�����
�����

virtual address
 space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)

CS350 Operating Systems Winter 2005

File Systems 4

File Position

• may be associated with the file, with a process, or with a file descriptor (Unix
style)

• read and write operations

– start from the current file position

– update the current file position

• this makes sequental file I/O easy for an application to request

• for non-sequental (random) file I/O, use:

– seek, to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unix pread, pwrite:

pread(fileId,vaddr,length,filePosition)

CS350 Operating Systems Winter 2005

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.

CS350 Operating Systems Winter 2005

File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

lseek(f,99*512,SEEK_SET);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

lseek(f,-1024,SEEK_CUR);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time, in
reverse order.

CS350 Operating Systems Winter 2005

File Systems 7

File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second 512 byte chunk of a file, until 50 have been
read.

CS350 Operating Systems Winter 2005

File Systems 8

Memory-Mapped Files

• generic interface:

vaddr ← mmap(file descriptor,fileoffset,length)

munmap(vaddr,length)

• mmap call returns the virtual address to which the file is mapped

• munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.

CS350 Operating Systems Winter 2005

File Systems 9

Memory Mapping Illustration

virtual address
 space

length

vaddr

length

fileoffset

file

CS350 Operating Systems Winter 2005

File Systems 10

Memory Mapping Update Semantics

• what should happen if the virtual memory to which a file has been mapped is
updated?

• some options:

– prohibit updates (read-only mapping)

– eager propagation of the update to the file (too slow!)

– lazy propagation of the update to the file

∗ user may be able to request propagation (e.g., Posix msync()
∗ propagation may be guaranteed by munmap()

– allow updates, but do not propagate them to the file

CS350 Operating Systems Winter 2005

File Systems 11

Memory Mapping Concurrency Semantics

• what should happen if a memory mapped file is updated?

– by a process that has mmapped the same file

– by a process that is updating the file using a write() system call

• options are similar to those on the previous slide. Typically:

– propagate lazily: processes that have mapped the file may eventually see
the changes

– propagate eagerly: other processes will see the changes

∗ typically implemented by invalidating other process’s page table entries

CS350 Operating Systems Winter 2005

File Systems 12

File Names

• flat namespace

– file names are simple strings

• hierarchical namespace

– directories (folders) can be used to organize files and/or other directories

– directory inclusion graph is a tree

– pathname: file or directory is identified by a path in the tree

Unix: /home/kmsalem/courses/cs350/notes/filesys.ps

Windows: c:\kmsalem\cs350\schedule.txt

CS350 Operating Systems Winter 2005

File Systems 13

Hierarchical Namespace Example

= directory

= file

Key

x
y

z

a

b
ck l

f g

a b

CS350 Operating Systems Winter 2005

File Systems 14

Acyclic File Namespaces

• directory inclusion graph can be a (rooted) DAG

• allows files/directories to have more than one pathname

– increased flexibility for file sharing and file organization

– file removal and some other file system operations are more complicated

• examples:

Rooted Acyclic Namespace An Unrooted DAG

bob mary

a1.cc

proj.cc

a
b

c d

CS350 Operating Systems Winter 2005

File Systems 15

General File Namespaces

a

b

d

c

• no restriction on inclusion graph (except perhaps that
it should have a designated root node)

• maximum flexibility

• additional complications, e.g.:

– reference counts are no longer sufficient for im-
plementing file deletion

– pathnames can have an infinite number of compo-
nents

CS350 Operating Systems Winter 2005

File Systems 16

File Links

• typically, a new file or directory is linked to a single “parent” directory when
it is created. This gives a hierarchical namespace.

• another mechanism can then be used to create additional links to existing files
or directories, introducing non-hierarchical structure in the namespace.

• hard links

– “first class” links, like the original link to a file

– referential integrity is maintained (no “dangling” hard links)

– scope usually restricted to a single file system

– Unix: hard links can be made to files, but not to directories. This
restriction is sufficient to avoid cycles. (Why?)

• soft links (a.k.a. “symbolic links”, “shortcuts”)

– referential integrity is not maintained

– flexible: may be allowed to span file systems, may link to directories and
(possibly) create cycles

CS350 Operating Systems Winter 2005

File Systems 17

Hard Link Example (Part 1)

m

link(/y/k/g, /z/m)

x
y

z

a

b
ck l

f g

a b

CS350 Operating Systems Winter 2005

File Systems 18

Hard Link Example (Part 2)

m

link(/y/k/g, /z/m)
unlink(/y/k/g)

x
y

z

a

b
ck l

f

a b

CS350 Operating Systems Winter 2005

File Systems 19

Soft Link Example (Part 1)

m

symlink(/y/k/g, /z/m)

x
y

z

a

b
ck l

f g

a b

CS350 Operating Systems Winter 2005

File Systems 20

Soft Link Example (Part 2)

m

symlink(/y/k/g, /z/m)

unlink(/y/k/g)

"dangling" soft link

x
y

z

a

b
ck l

f

a b

CS350 Operating Systems Winter 2005

File Systems 21

Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS: use two-part file names: file system name,pathname

– example: C:\kmsalem\cs350\schedule.txt

Unix: merge file graphs into a single graph

– Unix mount system call does this

CS350 Operating Systems Winter 2005

File Systems 22

Unix mount Example

a

q

r
x

g

a

q

r
x

g

"root" file system file system X

result of mount(file system X, /x/a)

x
y

z

a

b
ck la b

x
y

z

a

b
ck la b

CS350 Operating Systems Winter 2005

File Systems 23

File System Implementation

• space management

• file indexing (how to locate file data and meta-data)

• directories

• links

• buffering, in-memory data structures

• persistence

CS350 Operating Systems Winter 2005

File Systems 24

Space Allocation

• space may be allocated in fixed-size chunks, or in chuncks of varying size

• fixed-size chunks

– simple space management

– internal fragmentation

• variable-size chunks

– external fragmentation

fixed−size allocation

variable−size allocation

CS350 Operating Systems Winter 2005

File Systems 25

Space Allocation (continued)

• differences between primary and secondary memory

– larger transfers are cheaper (per byte) than smaller transfers

– sequential I/O is faster than random I/O

• both of these suggest that space should be allocated to files in large chunks,
sometimes called extents

CS350 Operating Systems Winter 2005

File Systems 26

File Indexing

• in general, a file will require more than one chunk of allocated space (extent)

• this is especially true because files can grow

• how to find all of a file’s data?

chaining:
– each chunk includes a pointer to the next chunk
– OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example

– like chaining, but the chain is kept in an external structure

per-file index: Unix i-node and NachOS FileHeader, for example

– for each file, maintain a table of pointers to the file’s blocks or extents

CS350 Operating Systems Winter 2005

File Systems 27

Chaining

CS350 Operating Systems Winter 2005

File Systems 28

External Chaining (File Access Table)

external chain
(file access table)

CS350 Operating Systems Winter 2005

File Systems 29

Per-File Indexing

CS350 Operating Systems Winter 2005

File Systems 30

File Meta-Data and Other Information

• where to store file meta-data?

– immediately preceding the file data

– with the file index (if per-file indexing is being used)

– with the directory entry for the file

∗ this is a problem if a file can have multiple names, and thus multiple
directory entries

CS350 Operating Systems Winter 2005

File Systems 31

Unix i-nodes

• an i-node is a particular implementation of a per-file index

• each i-node is uniquely identified by an i-number, which determines its
physical location on the disk

• an i-node is a fixed size record containing:

file attribute values
– file type
– file owner and group
– access controls
– creation, reference and update timestamps
– file size

direct block pointers: approximately 10 of these

single indirect block pointer

double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Winter 2005

File Systems 32

i-node Diagram

single indirect

double indirect

triple indirect

direct

direct
direct

attribute values

i−node (not to scale!) data blocks

indirect blocks

CS350 Operating Systems Winter 2005

File Systems 33

NachOS FileHeader

#define NumDirect ((SectorSize-2*sizeof(int))/sizeof(int))

class FileHeader {

public:

// methods here

private:

int numBytes; // file size in bytes

int numSectors; // file size in sectors

int dataSectors[NumDirect]; // direct pointers

}

CS350 Operating Systems Winter 2005

File Systems 34

Directories

• A directory consists of a set of entries, where each entry is a record that
includes:

– a file name (component of a path name)

– a file “locator”

∗ location of the first block of the file, if chaining or external chaining is
used

∗ location of the file index, if per-file indexing is being used

• A directory can be implemented like any other file, except:

– interface should allow reading of records (can be provided by a special
system call or an library)

– file should not be writable directly by application programs

– directory records are updated by the kernel as files are created and
destroyed

CS350 Operating Systems Winter 2005

File Systems 35

Implementing Hard Links (Unix)

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

– create a new entry in directory /z

∗ file name in new entry is m
∗ file locator (i-number) in the new entry is the same as the i-number for

entry g in directory /y/k

CS350 Operating Systems Winter 2005

File Systems 36

Implementing Soft Links (Unix)

• soft links are implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a new symlink file

– add a new entry in directory /z

∗ file name in new entry is m
∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the new symlink file

• change the behaviour of the open system call so that when the symlink file is
encountered during open(/z/m), the file /y/k/g will be opened instead.

CS350 Operating Systems Winter 2005

File Systems 37

File System Meta-Data

• file system must record:

– location of file indexes or file allocation table

– location of free list(s) or free space index

– file system parameters, e.g., block size

– file system identifier and other attributes

• example: Unix superblock

– located at fixed, predefined location(s) on the disk

• example: NachOS free space bitmap and directory files

– headers for these files are located in disk sectors 0 and 1

CS350 Operating Systems Winter 2005

File Systems 38

Main Memory Data Structures

0

0

open file tables
per process system open file table block buffer cache

Secondary Memory (persistent)

Primary Memory (volatile)

cached i−nodes

(cached copies of blocks)

data blocks, index blocks, i−nodes, etc.

1
2
3

3
2
1

CS350 Operating Systems Winter 2005

File Systems 39

A Simple Exercise

• Walk through the steps that the file system must take to implement Open.

– which data structures (from the previous slide) are updated?

– how much disk I/O is involved?

CS350 Operating Systems Winter 2005

File Systems 40

Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because a failure, some but not all of these changes are reflected on
the disk?

CS350 Operating Systems Winter 2005

File Systems 41

Fault Tolerance

• special-purpose consistency checkers (e.g., Unix fsck in Berkeley FFS,
Linux ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry
∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences
of changes can be written to disk in a single operation

– after changes have been journaled, update the disk data structures
(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before
the failure

CS350 Operating Systems Winter 2005

