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Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– alternatively, a file may have some internal structure, e.g., a data may
consist of sequence of numbered records

– file may change size over time

– file has associated meta-data (attributes), in addition to the file name

∗ examples: owner, access controls, file type, creation and access
timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed, . . .

CS350 Operating Systems Winter 2005

File Systems 2

File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in
subsequent operations to identify the file. (Why is this done?)

• read, write

– must specify which file to read, which part of the file to read, and where to
put the data that has been read (similar for write).

– often, file position is implicit (why?)

• seek

• get/set file attributes, e.g., Unix fstat, chmod
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File Read
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virtual address
   space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)
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File Position

• may be associated with the file, with a process, or with a file descriptor (Unix
style)

• read and write operations

– start from the current file position

– update the current file position

• this makes sequental file I/O easy for an application to request

• for non-sequental (random) file I/O, use:

– seek, to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unix pread, pwrite:

pread(fileId,vaddr,length,filePosition)
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Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.
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File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

lseek(f,99*512,SEEK_SET);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

lseek(f,-1024,SEEK_CUR);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time, in
reverse order.
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File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second 512 byte chunk of a file, until 50 have been
read.
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Memory-Mapped Files

• generic interface:

vaddr ← mmap(file descriptor,fileoffset,length)

munmap(vaddr,length)

• mmap call returns the virtual address to which the file is mapped

• munmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.
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Memory Mapping Illustration

virtual address
   space

length

vaddr

length

fileoffset

file
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Memory Mapping Update Semantics

• what should happen if the virtual memory to which a file has been mapped is
updated?

• some options:

– prohibit updates (read-only mapping)

– eager propagation of the update to the file (too slow!)

– lazy propagation of the update to the file

∗ user may be able to request propagation (e.g., Posix msync()
∗ propagation may be guaranteed by munmap()

– allow updates, but do not propagate them to the file
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Memory Mapping Concurrency Semantics

• what should happen if a memory mapped file is updated?

– by a process that has mmapped the same file

– by a process that is updating the file using a write() system call

• options are similar to those on the previous slide. Typically:

– propagate lazily: processes that have mapped the file may eventually see
the changes

– propagate eagerly: other processes will see the changes

∗ typically implemented by invalidating other process’s page table entries
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File Names

• flat namespace

– file names are simple strings

• hierarchical namespace

– directories (folders) can be used to organize files and/or other directories

– directory inclusion graph is a tree

– pathname: file or directory is identified by a path in the tree

Unix: /home/kmsalem/courses/cs350/notes/filesys.ps

Windows: c:\kmsalem\cs350\schedule.txt
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Hierarchical Namespace Example

= directory

= file

Key
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Acyclic File Namespaces

• directory inclusion graph can be a (rooted) DAG

• allows files/directories to have more than one pathname

– increased flexibility for file sharing and file organization

– file removal and some other file system operations are more complicated

• examples:

Rooted Acyclic Namespace An Unrooted DAG

bob mary

a1.cc

proj.cc

a
b

c d
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General File Namespaces

a

b

d

c

• no restriction on inclusion graph (except perhaps that
it should have a designated root node)

• maximum flexibility

• additional complications, e.g.:

– reference counts are no longer sufficient for im-
plementing file deletion

– pathnames can have an infinite number of compo-
nents

CS350 Operating Systems Winter 2005

File Systems 16

File Links

• typically, a new file or directory is linked to a single “parent” directory when
it is created. This gives a hierarchical namespace.

• another mechanism can then be used to create additional links to existing files
or directories, introducing non-hierarchical structure in the namespace.

• hard links

– “first class” links, like the original link to a file

– referential integrity is maintained (no “dangling” hard links)

– scope usually restricted to a single file system

– Unix: hard links can be made to files, but not to directories. This
restriction is sufficient to avoid cycles. (Why?)

• soft links (a.k.a. “symbolic links”, “shortcuts”)

– referential integrity is not maintained

– flexible: may be allowed to span file systems, may link to directories and
(possibly) create cycles
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Hard Link Example (Part 1)

m

link(/y/k/g, /z/m)
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Hard Link Example (Part 2)

m

link(/y/k/g, /z/m)
unlink(/y/k/g)
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Soft Link Example (Part 1)

m

symlink(/y/k/g, /z/m)
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Soft Link Example (Part 2)

m

symlink(/y/k/g, /z/m)

unlink(/y/k/g)

"dangling" soft link
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Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS: use two-part file names: file system name,pathname

– example: C:\kmsalem\cs350\schedule.txt

Unix: merge file graphs into a single graph

– Unix mount system call does this
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Unix mount Example
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result of mount( file system X, /x/a )
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File System Implementation

• space management

• file indexing (how to locate file data and meta-data)

• directories

• links

• buffering, in-memory data structures

• persistence
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Space Allocation

• space may be allocated in fixed-size chunks, or in chuncks of varying size

• fixed-size chunks

– simple space management

– internal fragmentation

• variable-size chunks

– external fragmentation

fixed−size allocation

variable−size allocation
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Space Allocation (continued)

• differences between primary and secondary memory

– larger transfers are cheaper (per byte) than smaller transfers

– sequential I/O is faster than random I/O

• both of these suggest that space should be allocated to files in large chunks,
sometimes called extents
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File Indexing

• in general, a file will require more than one chunk of allocated space (extent)

• this is especially true because files can grow

• how to find all of a file’s data?

chaining:
– each chunk includes a pointer to the next chunk
– OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example

– like chaining, but the chain is kept in an external structure

per-file index: Unix i-node and NachOS FileHeader, for example

– for each file, maintain a table of pointers to the file’s blocks or extents
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Chaining
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External Chaining (File Access Table)

external chain
(file access table)
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Per-File Indexing
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File Meta-Data and Other Information

• where to store file meta-data?

– immediately preceding the file data

– with the file index (if per-file indexing is being used)

– with the directory entry for the file

∗ this is a problem if a file can have multiple names, and thus multiple
directory entries

CS350 Operating Systems Winter 2005



File Systems 31

Unix i-nodes

• an i-node is a particular implementation of a per-file index

• each i-node is uniquely identified by an i-number, which determines its
physical location on the disk

• an i-node is a fixed size record containing:

file attribute values
– file type
– file owner and group
– access controls
– creation, reference and update timestamps
– file size

direct block pointers: approximately 10 of these

single indirect block pointer

double indirect block pointer

triple indirect block pointer
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i-node Diagram

single indirect

double indirect

triple indirect

direct

direct
direct

attribute values

i−node (not to scale!) data blocks

indirect blocks
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NachOS FileHeader

#define NumDirect ((SectorSize-2*sizeof(int))/sizeof(int))

class FileHeader {

public:

// methods here

private:

int numBytes; // file size in bytes

int numSectors; // file size in sectors

int dataSectors[NumDirect]; // direct pointers

}
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Directories

• A directory consists of a set of entries, where each entry is a record that
includes:

– a file name (component of a path name)

– a file “locator”

∗ location of the first block of the file, if chaining or external chaining is
used

∗ location of the file index, if per-file indexing is being used

• A directory can be implemented like any other file, except:

– interface should allow reading of records (can be provided by a special
system call or an library)

– file should not be writable directly by application programs

– directory records are updated by the kernel as files are created and
destroyed
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Implementing Hard Links (Unix)

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

– create a new entry in directory /z

∗ file name in new entry is m
∗ file locator (i-number) in the new entry is the same as the i-number for

entry g in directory /y/k
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Implementing Soft Links (Unix)

• soft links are implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a new symlink file

– add a new entry in directory /z

∗ file name in new entry is m
∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the new symlink file

• change the behaviour of the open system call so that when the symlink file is
encountered during open(/z/m), the file /y/k/g will be opened instead.
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File System Meta-Data

• file system must record:

– location of file indexes or file allocation table

– location of free list(s) or free space index

– file system parameters, e.g., block size

– file system identifier and other attributes

• example: Unix superblock

– located at fixed, predefined location(s) on the disk

• example: NachOS free space bitmap and directory files

– headers for these files are located in disk sectors 0 and 1
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Main Memory Data Structures

0

0

open file tables
per process system open file table block buffer cache

Secondary Memory (persistent)

Primary Memory (volatile)

cached i−nodes

(cached copies of blocks)

data blocks, index blocks, i−nodes, etc.

1
2
3

3
2
1
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A Simple Exercise

• Walk through the steps that the file system must take to implement Open.

– which data structures (from the previous slide) are updated?

– how much disk I/O is involved?
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Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because a failure, some but not all of these changes are reflected on
the disk?
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Fault Tolerance

• special-purpose consistency checkers (e.g., Unix fsck in Berkeley FFS,
Linux ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry
∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences
of changes can be written to disk in a single operation

– after changes have been journaled, update the disk data structures
(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before
the failure
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