
Memory Management 1

Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– addresses typically range from 0 to some maximum, though some portions
of this range are usually used by the OS and/or devices, and are not
available for user processes

• Virtual addresses (or logical addresses) are addresses provided by the OS to
processes.

– one virtual address space per process

– addresses typically start at zero, but not necessarily

– space may consist of several segments

• Address translation (or address binding) means mapping virtual addresses to
physical addresses.

CS350 Operating Systems Winter 2005

Memory Management 2

Example 1: Dynamic Relocation

• hardware provides a memory management unit which includes a relocation
register

• dynamic binding: at run-time, the contents of the relocation register are added
to each virtual address to determine the corresponding physical address

• OS maintains a separate relocation register value for each process, and
ensures that relocation register is reset on each context switch

• Properties

– all programs can have address spaces that start with address 0

– OS can relocate a process without changing the process’s program

– OS can allocate physical memory dynamically (physical partitions can
change over time), again without changing user programs

– each virtual address space still corresponds to a contiguous range of
physical addresses

CS350 Operating Systems Winter 2005

Memory Management 3

Example 1: Address Space Diagram

2
m

−1

0

Proc 1 virtual address space

0

0

max1

max2

virtual address space
Proc 2

physical memory

A

A + max1

C + max2

C

CS350 Operating Systems Winter 2005

Memory Management 4

Example 1: Relocation Mechanism

v bits m bits

m bits

+

virtual address physical address

relocation
register

CS350 Operating Systems Winter 2005

Memory Management 5

Example 2: Paging

• Each virtual address space is divided into fixed-size chunks called pages

• The physical address space is divided into frames. Frame size matches page
size.

• OS maintains a page table for each process. Page table specifies the frame in
which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table
of the running process.

• Properties

– simple physical memory management

– virtual address space need not be physically contiguous in physical space
after translation.

CS350 Operating Systems Winter 2005

Memory Management 6

Example 2: Address Space Diagram

2
m

−1

0
Proc 1 virtual address space

0

max1

virtual address space
Proc 2

physical memory

max2

0

CS350 Operating Systems Winter 2005

Memory Management 7

Example 2: Page Table Mechanism

m bits

register
page table base

v bits m bits

frame # offsetpage # offset

virtual address physical address

frame #

page tableprotection and
other flags

CS350 Operating Systems Winter 2005

Memory Management 8

Physical Memory Allocation

fixed allocation size:

• space tracking and placement are simple

• internal fragmentation

variable allocation size:

• space tracking and placement more complex

– placement heuristics: first fit, best fit, worst fit

• external fragmentation

CS350 Operating Systems Winter 2005

Memory Management 9

Memory Protection

• ensure that each process accesses only the physical memory that its virtual
address space is bound to.

– threat: virtual address is too large

– solution: MMU limit register checks each virtual address

∗ for simple dynamic relocation, limit register contains the maximum
virtual address of the running process

∗ for paging, limit register contains the maximum page number of the
running process

– MMU generates exception if the limit is exceeded

• restrict the use of some portions of an address space

– example: read-only memory

– approach (paging):

∗ include read-only flag in each page table entry
∗ MMU raises exception on attempt to write to a read-only page

CS350 Operating Systems Winter 2005

Memory Management 10

Roles of the Operating System and the MMU (Summary)

• operating system:

– save/restore MMU state on context switches

– handle exceptions raised by the MMU

– manage and allocate physical memory

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for protection violations

– raise exceptions when necessary

CS350 Operating Systems Winter 2005

Memory Management 11

Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory
operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation
(for page table entry lookup) for each memory operation performed during
instruction execution

– Simple address translation through a page table can cut instruction
execution rate in half.

– More complex translation schemes (e.g., multi-level paging) are even
more expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup

CS350 Operating Systems Winter 2005

Memory Management 12

TLB

• Each entry in the TLB contains a (page number,frame number) pair, plus
copies of some or all of the page’s protection bits, use bit, and dirty bit.

• If address translation can be accomplished using a TLB entry, access to the
page table is avoided.

• TLB lookup is much faster than a memory access. TLB is an associative
memory - page numbers of all entries are checked simultaneously for a match.
However, the TLB is typically small (10

2 to 10
3 entries).

• Otherwise, translate through the page table, and add the resulting translation
to the TLB, replacing an existing entry if necessary. In a hardware controlled
TLB, this is done by the MMU. In a software controlled TLB, it is done by the
kernel.

• On a context switch, the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Winter 2005

Memory Management 13

Segmentation

• An OS that supports segmentation (e.g., Multics, OS/2) can provide more than
one address space to each process.

• The individual address spaces are called segments.

• A logical address consists of two parts:

(segment ID, address within segment)

• Each segment:

– can grow or shrink independently of the other segments

– has its own memory protection attributes

• For example, process could use separate segments for code, data, and stack.

CS350 Operating Systems Winter 2005

Memory Management 14

Segmented Address Space Diagram

2
m

−1

0

���

���

������������������������

����������������������������

�������������������� ��
	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

��������������������

���������������������

�
�

�
�

�
�

physical memory

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

segment 0

CS350 Operating Systems Winter 2005

Memory Management 15

Mechanism for Translating Segmented Addresses

v bits

m bits

m bits

physical address

+seg # offset

virtual address

register
segment table base

startlength

segment table

protection

This translation mechanism requires physically contiguous alloca-
tion of segments.

CS350 Operating Systems Winter 2005

Memory Management 16

Combining Segmentation and Paging

2
m

−1

0

���

���

������������������������

����������������������������

��������������������

��
���������������������������������������
���������������������������

��

���������������������
���������������

������������������������

������������������������

physical memory

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

segment 0

CS350 Operating Systems Winter 2005

Memory Management 17

Combining Segmentation and Paging: Translation Mechanism

m bits

m bits

physical address

register
segment table base

segment table

protection

offset

virtual address

seg # page #

page table
length

v bits

frame # offset

page table

CS350 Operating Systems Winter 2005

Memory Management 18

Simulating Segmentation with Paging

stack 2stack 1datacode invalid
pages

invalid
pages

virtual address space

CS350 Operating Systems Winter 2005

Memory Management 19

Shared Virtual Memory

• virtual memory sharing allows parts of two or more address spaces to overlap

• shared virtual memory is:

– a way to use physical memory more efficiently, e.g., one copy of a
program can be shared by several processes

– a mechanism for interprocess communication

• sharing is accomplished by mapping virtual addresses from several processes
to the same physical address

• unit of sharing can be a page or a segment

CS350 Operating Systems Winter 2005

Memory Management 20

Shared Pages Diagram

2
m

−1

0
Proc 1 virtual address space

0

max1

virtual address space
Proc 2

physical memory

max2

0

CS350 Operating Systems Winter 2005

Memory Management 21

Shared Segments Diagram

2
m

−1

0

 � � � � � � � � � � � � � � � �

!�!�!�!�!!�!�!�!�!!�!�!�!�!!�!�!�!�!

"�"�""�"�"#�#�##�#�#

$�$�$$�$�$$�$�$
%�%�%%�%�%%�%�%

&�&�&&�&�&&�&�&
'�'�''�'�''�'�'

(�(�((�(�()�)�))�)�)

��*�*�**�*�*�*�**�*�*�*�**�*�*�*�*

+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+

,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,

-�-�-�-�--�-�-�-�--�-�-�-�--�-�-�-�-

physical memory

Proc 2

Proc 1
0

0

0

0

segment 1

segment 0

segment 2

segment 0

segment 1
(shared)

(shared)

CS350 Operating Systems Winter 2005

Memory Management 22

An Address Space for the Kernel

Option 1: Kernel in physical space

• mechanism: disable MMU in system mode, enable it in user mode

• accessing process address spaces: OS must interpret process page tables

• OS must be entirely memory resident

Option 2: Kernel in separate logical space

• mechanism: MMU has separate state for user and system modes

• accessing process address spaces: difficult

• portions of the OS may be non-resident

Option 3: Kernel shares logical space with each process

• memory protection mechanism is used to isolate the OS

• accessing process address space: easy (process and kernel share the same
address space)

• portions of the OS may be non-resident

CS350 Operating Systems Winter 2005

Memory Management 23

The Kernel in Process’ Address Spaces

Process 1 Process 2
Address Space Address Space

Kernel
(shared, protected)

Attempts to access kernel code/data in user mode result in memory
protection exceptions, not invalid address exceptions.

CS350 Operating Systems Winter 2005

Memory Management 24

Memory Management Interface

• much memory allocation is implicit, e.g.:

– allocation for address space of new process

– implicit stack growth on overflow

• OS may support explicit requests to grow/shrink address space, e.g., Unix
brk system call.

• shared virtual memory (simplified Solaris example):

Create: shmid = shmget(key,size)

Attach: vaddr = shmat(shmid, vaddr)

Detach: shmdt(vaddr)

Delete: shmctl(shmid,IPC RMID)

CS350 Operating Systems Winter 2005

