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Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– addresses typically range from 0 to some maximum, though some portions
of this range are usually used by the OS and/or devices, and are not
available for user processes

• Virtual addresses (or logical addresses) are addresses provided by the OS to
processes.

– one virtual address space per process

– addresses typically start at zero, but not necessarily

– space may consist of several segments

• Address translation (or address binding) means mapping virtual addresses to
physical addresses.
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Example 1: Dynamic Relocation

• hardware provides a memory management unit which includes a relocation
register

• dynamic binding: at run-time, the contents of the relocation register are added
to each virtual address to determine the corresponding physical address

• OS maintains a separate relocation register value for each process, and
ensures that relocation register is reset on each context switch

• Properties

– all programs can have address spaces that start with address 0

– OS can relocate a process without changing the process’s program

– OS can allocate physical memory dynamically (physical partitions can
change over time), again without changing user programs

– each virtual address space still corresponds to a contiguous range of
physical addresses
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Example 1: Address Space Diagram
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Example 1: Relocation Mechanism
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Example 2: Paging

• Each virtual address space is divided into fixed-size chunks called pages

• The physical address space is divided into frames. Frame size matches page
size.

• OS maintains a page table for each process. Page table specifies the frame in
which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table
of the running process.

• Properties

– simple physical memory management

– virtual address space need not be physically contiguous in physical space
after translation.
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Example 2: Address Space Diagram
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Example 2: Page Table Mechanism
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Physical Memory Allocation

fixed allocation size:

• space tracking and placement are simple

• internal fragmentation

variable allocation size:

• space tracking and placement more complex

– placement heuristics: first fit, best fit, worst fit

• external fragmentation
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Memory Protection

• ensure that each process accesses only the physical memory that its virtual
address space is bound to.

– threat: virtual address is too large

– solution: MMU limit register checks each virtual address

∗ for simple dynamic relocation, limit register contains the maximum
virtual address of the running process

∗ for paging, limit register contains the maximum page number of the
running process

– MMU generates exception if the limit is exceeded

• restrict the use of some portions of an address space

– example: read-only memory

– approach (paging):

∗ include read-only flag in each page table entry
∗ MMU raises exception on attempt to write to a read-only page
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Roles of the Operating System and the MMU (Summary)

• operating system:

– save/restore MMU state on context switches

– handle exceptions raised by the MMU

– manage and allocate physical memory

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for protection violations

– raise exceptions when necessary
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Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory
operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation
(for page table entry lookup) for each memory operation performed during
instruction execution

– Simple address translation through a page table can cut instruction
execution rate in half.

– More complex translation schemes (e.g., multi-level paging) are even
more expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup
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TLB

• Each entry in the TLB contains a (page number,frame number) pair, plus
copies of some or all of the page’s protection bits, use bit, and dirty bit.

• If address translation can be accomplished using a TLB entry, access to the
page table is avoided.

• TLB lookup is much faster than a memory access. TLB is an associative
memory - page numbers of all entries are checked simultaneously for a match.
However, the TLB is typically small (10

2 to 10
3 entries).

• Otherwise, translate through the page table, and add the resulting translation
to the TLB, replacing an existing entry if necessary. In a hardware controlled
TLB, this is done by the MMU. In a software controlled TLB, it is done by the
kernel.

• On a context switch, the kernel must clear or invalidate the TLB. (Why?)
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Segmentation

• An OS that supports segmentation (e.g., Multics, OS/2) can provide more than
one address space to each process.

• The individual address spaces are called segments.

• A logical address consists of two parts:

(segment ID, address within segment)

• Each segment:

– can grow or shrink independently of the other segments

– has its own memory protection attributes

• For example, process could use separate segments for code, data, and stack.
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Segmented Address Space Diagram
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Mechanism for Translating Segmented Addresses

v bits

m bits

m bits

physical address

+seg # offset

virtual address

register
segment table base

startlength

segment table

protection

This translation mechanism requires physically contiguous alloca-
tion of segments.
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Combining Segmentation and Paging
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Combining Segmentation and Paging: Translation Mechanism
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Simulating Segmentation with Paging
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Shared Virtual Memory

• virtual memory sharing allows parts of two or more address spaces to overlap

• shared virtual memory is:

– a way to use physical memory more efficiently, e.g., one copy of a
program can be shared by several processes

– a mechanism for interprocess communication

• sharing is accomplished by mapping virtual addresses from several processes
to the same physical address

• unit of sharing can be a page or a segment
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Shared Pages Diagram
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Shared Segments Diagram
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An Address Space for the Kernel

Option 1: Kernel in physical space

• mechanism: disable MMU in system mode, enable it in user mode

• accessing process address spaces: OS must interpret process page tables

• OS must be entirely memory resident

Option 2: Kernel in separate logical space

• mechanism: MMU has separate state for user and system modes

• accessing process address spaces: difficult

• portions of the OS may be non-resident

Option 3: Kernel shares logical space with each process

• memory protection mechanism is used to isolate the OS

• accessing process address space: easy (process and kernel share the same
address space)

• portions of the OS may be non-resident

CS350 Operating Systems Winter 2005



Memory Management 23

The Kernel in Process’ Address Spaces

Process 1 Process 2
Address Space Address Space

Kernel
(shared, protected)

Attempts to access kernel code/data in user mode result in memory
protection exceptions, not invalid address exceptions.
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Memory Management Interface

• much memory allocation is implicit, e.g.:

– allocation for address space of new process

– implicit stack growth on overflow

• OS may support explicit requests to grow/shrink address space, e.g., Unix
brk system call.

• shared virtual memory (simplified Solaris example):

Create: shmid = shmget(key,size)

Attach: vaddr = shmat(shmid, vaddr)

Detach: shmdt(vaddr)

Delete: shmctl(shmid,IPC RMID)
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