
NachOS 1

What is NachOS?

workstation simulator: the simulated workstation includes a MIPS processor,
main memory, and a collection of devices including a timer, disk(s), a network
interface, and input and output consoles.

operating system: the NachOS operating system manages the simulated
workstation, and implements a set of system calls for user programs

user programs: NachOS user programs run on the simulated machine, and use
services provided by the NachOS operating system

CS350 Operating Systems Winter 2005

NachOS 2

The NachOS Machine Simulator

tlb registers mainMemory

timer

diskconsoles

pageTableSize
pageTable (pointer)

Machine

�����
���
���

• registers include the program
counter and stack pointer

• main memory consists of
NumPhysPages frames, each
of size PageSize

• some devices (e.g., network, sec-
ond disk) are not shown

• simulator uses either the
TLB or the pageTable and
pageTableSize registers,
but not both.

CS350 Operating Systems Winter 2005

NachOS 3

Some Components of The NachOS Kernel

fr
am

eM
ap

procTable

fileSystem
pa

ge
 ta

bl
e

AddrSpace

Thread

pa
ge

 ta
bl

e
AddrSpace

Thread
pa

ge
 ta

bl
e

AddrSpace

Thread

currentThread • not all OS components are
shown

• each NachOS process has an en-
try in ProcTable, a thread,
and an address space

• address spaces are implemented
by AddrSpace objects, which
include a page table

• frameMap tracks which main
memory frames are in use

• NachOS has two file system im-
plementations

CS350 Operating Systems Winter 2005

NachOS 4

How does NachOS differ from a “real” OS?

• The NachOS operating system runs beside the simulated workstation, not on
it. This means that the operating system and user programs (which run on the
simulated workstation) do not share system resources.

• The NachOS operating system controls simulated devices through a set of
abstract device interfaces. Instead of executing special I/O instructions or
writing codes into device control registers, the operating system calls methods
like Disk::ReadRequest.

CS350 Operating Systems Winter 2005

NachOS 5

Review: MIPS Register Usage

R0, $0 =

R2, $2 =

R4, $4 =

R5, $5 =

R6, $6 =

R7, $7 =

R29, $29 =

R30, $30 =

R31, $31 =

CS350 Operating Systems Winter 2005

NachOS 6

System Calls

• to perform a system call, a user program executes a MIPS syscall
instruction, as usual.

• to simulate the syscall instruction, the simulator’s Machine::Run
method (indirectly) calls the kernel’s ExceptionHandler function.
(userprog/exception.cc)

• ExceptionHandler performs any kernel operations that are needed to
implement the system call.

• When ExceptionHandler returns, control goes back the
Machine::Run and the user program simulation picks up from where it left
off, just as in real life.

The call to ExceptionHandler is the switch from user mode
to system mode. The return from ExceptionHandler to
Machine::Run is the switch from system mode back to user
mode.

CS350 Operating Systems Winter 2005

NachOS 7

How a System Call Works (example C program)

/* call.c

* Show how a function/syscall is made.

*/

#include "syscall.h"

int

main()

{

Write("Hello World\n", 12, 1);

}

CS350 Operating Systems Winter 2005

NachOS 8

How a System Call Works (compiled program - part 1)

.file 1 "call.c"

.rdata

.align 2

$LC0:

.ascii "Hello World\n\000"

.text

.align 2

.globl main

.ent main

CS350 Operating Systems Winter 2005

NachOS 9

How a System Call Works (compiled program - part 2)

main:

.frame $fp,24,$31

.mask 0xc0000000,-4

.fmask 0x00000000,0

subu $sp,$sp,24

sw $31,20($sp)

sw $fp,16($sp)

move $fp,$sp

jal __main

la $4,$LC0

li $5,0x0000000c

li $6,0x00000001

jal Write

CS350 Operating Systems Winter 2005

NachOS 10

How a System Call Works (compiled program - part 3)

$L1:

.set noreorder

move $sp,$fp

lw $31,20($sp)

lw $fp,16($sp)

j $31

addu $sp,$sp,24

.set reorder

.end main

CS350 Operating Systems Winter 2005

NachOS 11

How a System Call Works (call stub from start.s)

.globl Write

.ent Write

Write:

addiu $2,$0,SC_Write

syscall

j $31

.end Write

CS350 Operating Systems Winter 2005

NachOS 12

Some System Call Codes (from start.s)

/* system call codes */

#define SC_Halt 0

#define SC_Exit 1

#define SC_Exec 2

#define SC_Join 3

#define SC_Create 4

#define SC_Open 5

#define SC_Read 6

#define SC_Write 7

#define SC_Close 8

#define SC_Fork 9

#define SC_Yield 10

CS350 Operating Systems Winter 2005

NachOS 13

How a System Call Works (NachOS exception handler)

void ExceptionHandler(ExceptionType which)
{

int type = kernel->machine->ReadRegister(2);

kernel->currentThread->SaveUserState();
kernel->currentThread->space->SaveState();

switch(which) {
case SyscallException:

switch(type) {

case SC_Write:
vaddr = kernel->machine->ReadRegister(4);
len = kernel->machine->ReadRegister(5);
fileID = kernel->machine->ReadRegister(6);
retval = WriteHandler(fileID, vaddr, len);
break;

CS350 Operating Systems Winter 2005

NachOS 14

Exceptions and Interrupts

Exceptions: Exceptions are handled in the same way as system calls. If a user
program instruction causes an exception, the simulator (Machine::Run)
calls ExceptionHandler so that it can be handled by the kernel

Interrupts:

• The simulator keeps track of the simulation time at which device interrupts
are supposed to occur.

• After simulating each user instruction, the simulator advances simulation
time and determines whether interrupts are pending from any devices.

• If so, the simulator (Machine::Run) calls the kernel’s handler for that
interrupt before executing the next instruction.

• When the kernel’s handler returns, the simulation continues executing
instructions.

The kernel has a handler function for each type of interrupt (timer,
disk, console input, console output, network).

CS350 Operating Systems Winter 2005

NachOS 15

Summary of Machine/Kernel Interactions in NachOS

tlb registers mainMemory

timer

diskconsoles

pageTableSize
pageTable (pointer)

Machine

fr
am

eM
ap

procTable

fileSystem

pa
ge

 ta
bl

e

AddrSpace

Thread

currentThread

Run

ProcessStartup and main

ExceptionHandler

interrupt handlers

exception
return

interrupt return

�������	

CS350 Operating Systems Winter 2005

NachOS 16

NachOS Thread Facilities

Threads: new threads can be created, and threads can be destroyed. Each new
thread executes a kernel procedure that is specified when the thread is created.
(threads/thread.*)

Scheduling: a round-robin ready queue for threads (threads/scheduler.*)

Synchronization: semaphores, locks, and condition variables. These are
integrated with the scheduler: blocked threads are kept off of the ready queue,
unblocked threads are placed back onto the ready queue.
(threads/synch.*)

CS350 Operating Systems Winter 2005

NachOS 17

Context Switches in NachOS

• The user context of a thread can be saved in the Thread object.

• The thread’s user context includes the values in the registers of the simulated
machine, including the program counter and the stack pointer.

• When switching from one thread to another, the kernel:

– saves the old thread’s user context

– restores the new thread’s user context

• When the new thread returns to user mode, its own user context is in the
simulated machine’s registers.

CS350 Operating Systems Winter 2005

NachOS 18

NachOS Thread Scheduling

runningready

blockedcreated

Thread::Yield

Thread::Sleep

Scheduler::Run

Thread::Fork

Scheduler::ReadyToRun

CS350 Operating Systems Winter 2005

NachOS 19

Birth of a NachOS Process

• the creator does:

1. update the process table

2. create and initialize an address space (allocate physical memory, set up
page table, load user program and data into allocated space)

3. create a new thread and put it on the ready queue. The new thread executes
the kernel function ProcessStartup.

• the ProcessStartup function does:

1. Initialize the registers of the simulated machine (page table pointer,
program counter, stack pointer, and general registers)

2. Call Machine::Run. This call never returns.

Machine::Run starts simulation of the user program. This cor-
responds to an exception return in a real system. The thread is now
simulating the execution of user program code. That is, it is in user
mode.

CS350 Operating Systems Winter 2005

NachOS 20

Starting Up a User Program (start)

/* In Nachos all user programs are linked

* with start.s, it begins at virtual address 0

*/

.globl __start

.ent __start

__start:

jal main

move $4,$0

jal Exit

.end __start

CS350 Operating Systems Winter 2005

NachOS 21

NachOS Workstation Devices

• like many real devices, the NachOS workstation’s simulated devices are
asynchronous, which means that they use interrupts to notify the kernel that a
requested operation has been completed, or that a new operation is possible.
For example:

– the input console (keyboard) generates an interrupt each time a new input
character is available

– the output console (display) can only output one character at a time. It
generates an interrupt when it is ready to accept another character for
output.

– the disk accepts one read/write request at a time. It generates an interrupt
when the request has been completed.

• the kernel implements synchronous interfaces to each of these devices

– implemented using the synchronization primitives

– synchronous interfaces are much easier for the rest of the kernel to use
than the asynchronous interfaces. Use them!

CS350 Operating Systems Winter 2005

NachOS 22

Example: Synchronous Input Console

• SynchConsoleInput::GetChar() returns one character from the
console, and causes the calling thread to block (until a character is available) if
there are no available input characters.

• Implementation uses a single semaphore:

– SynchConsoleInput::GetChar() does a P() before attempting
to read a character from the input console.

– Input console interrupt handler does a V()

CS350 Operating Systems Winter 2005

NachOS 23

Address Spaces

• One AddrSpace object per NachOS process.

• AddrSpace maintains the process page table, and provides methods for
reading and writing data from virtual addresses.

• NachOS page table entry:

class TranslationEntry {

public:

int virtualPage; // page number

int physicalPage; // frame number

bool valid; // is this entry valid?

bool readOnly; // is page read-only?

bool use; // used by replacement alg

bool dirty; // used by replacement alg

};

CS350 Operating Systems Winter 2005

NachOS 24

Address Space Layout

0 max

Code Read−Only
Data

Initialized

Uninitialized

Stack
Data

Data

virtual addresses

• Size of each segment except stack is specified in NOFF file

• Code, read-only data and initialized data segments are initialized from the
NOFF file. Remaining segments are initially zero-filled.

• Segments are page aligned.

CS350 Operating Systems Winter 2005

NachOS 25

C Code for Segments Example

#define N (5)

unsigned int x = 0xdeadbeef;
int y = 0xbb;
const int blah = 0xff;
int data[N];

struct info {
int x;
int y;

};

CS350 Operating Systems Winter 2005

NachOS 26

C Code for Segments Example (cont’d)

main()
{

int i;
int j = 0xaa;
int k;
const int l = 0xee;
char *str = "Hello World\n";

for (i=0; i<N; i++) {
data[i] = i;

}
}

CS350 Operating Systems Winter 2005

NachOS 27

Coff2noff Output for Segments

Loading 4 sections:

".text" filepos 52 (0x34) mempos 0 (0x0)

size 736 (0x2e0)

".rdata" filepos 788 (0x314) mempos 768 (0x300)

size 32 (0x20)

".data" filepos 820 (0x334) mempos 896 (0x380)

size 16 (0x10)

".bss" filepos -1 (0xffffffff) mempos 1024 (0x400)

size 20 (0x14)

<not in file>

CS350 Operating Systems Winter 2005

NachOS 28

Some Output from objdump

Contents of section .rdata:
0300 ff000000 48656c6c 6f20576f 726c640a

....Hello World.
0310 00000000 00000000 00000000 00000000

................
Contents of section .data:
0380 efbeadde bb000000 00000000 00000000

................

CS350 Operating Systems Winter 2005

NachOS 29

The NachOS Stub File System

• NachOS has two file system implementations.

– The real file system has very limited functionality. Files are stored on the
workstation’s simulated disk.

– The “stub” file system stores files outside of the simulated machine, in the
file system of the machine on which NachOS is running. Magic!

• Until Asst 3, the “stub” file system is used. This is why a file that is created by
a NachOS user program appears on the machine on which NachOS is running.
This is also why NachOS user programs can be stored in files on host
machine, and not on the simulated workstation.

• The “stub” file system may seem unrealistic, however, a diskless workstation
with network boot uses a similar mechanism.

CS350 Operating Systems Winter 2005

NachOS 30

The NachOS File System: disk.h

#define SectorSize 128 // bytes

#define SectorsPerTrack 32

#define NumTracks 64 // per disk

#define NumSectors (SectorsPerTrack * NumTracks)

// 32 * 64 = 2048

Disk Size = 2048 sectors * 128 bytes = 256 KB

CS350 Operating Systems Winter 2005

NachOS 31

The NachOS File System: filesys.h

#define FreeMapSector 0

#define DirectorySector 1

#define FreeMapFileSize (NumSectors / BitsInByte)

// 2048 / 8 = 256

#define NumDirEntries 10

#define DirectoryFileSize

(sizeof(DirectoryEntry) * NumDirEntries)

// 20 * 10 = 200 (1.5625 sectors)

CS350 Operating Systems Winter 2005

NachOS 32

The NachOS File System: filesys.h (cont’d)

class FileSystem {

...

private:

// Bit map of free disk blocks,

// represented as a file

OpenFile* freeMapFile;

// "Root" directory -- list of

// file names, represented as a file

OpenFile* directoryFile;

};

FreeMap file has 2048 entries and occupies 2 sectors (256 bytes),
plus one sector for its header. Directory file has 10 entries, which
requires 200 bytes (2 sectors), plus one sector for its header.

CS350 Operating Systems Winter 2005

NachOS 33

The NachOS File System: filehdr.h

#define NumDirect

((SectorSize - 2 * sizeof(int))

/ sizeof(int))

#define MaxFileSize

(NumDirect * SectorSize)

class FileHeader {

...

private:

int numBytes;

int numSectors; // data sectors

int dataSectors[NumDirect]; // sector numbers

...

CS350 Operating Systems Winter 2005

NachOS 34

The NachOS File System: filehdr.h (cont’d)

• FileHeader fits in one sector = 128 bytes

• first two fields (numBytes and numSectors) use 8 bytes

• 120 bytes are left for block pointers

• each block pointer requires 4 bytes, so

NumDirect =
128 − 2 ∗ 4

4
= 30

• maximum file size is:

MaxFileSize = NumDirect ∗ SectorSize = 30 ∗ 128 = 3840

CS350 Operating Systems Winter 2005

NachOS 35

The NachOS File System: directory.h

#define FileNameMaxLen 9

// for simplicity, we assume

// file names are <= 9 characters long

class DirectoryEntry {

public:

bool inUse;

int sector;

char name[FileNameMaxLen + 1];

// Text name for file, with +1 for

// the trailing ’\0’

};

4 bytes for inUse, 4 bytes for sector, 10 bytes for name.

CS350 Operating Systems Winter 2005

NachOS 36

File System Command Line Example

mobey 1% nachos -f

Machine halting!

Ticks: total 34510, idle 34500,

system 10, user 0

Disk I/O: reads 3, writes 5

Console I/O: reads 0, writes 0

Paging: faults 0

Network I/O: packets received 0, sent 0

CS350 Operating Systems Winter 2005

NachOS 37

File System Command Line Example (part 2)

mobey 2% nachos -D

Bit map file header:

FileHeader contents. File size: 128.

File blocks:

2

File contents:

\1f\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0

CS350 Operating Systems Winter 2005

NachOS 38

File System Command Line Example (part 3)

Directory file header:
FileHeader contents. File size: 200.
File blocks:
3 4
File contents:
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
Bitmap set:
0, 1, 2, 3, 4,
Directory contents:
Machine halting!

CS350 Operating Systems Winter 2005

NachOS 39

File System Command Line Example (part 4)

mobey 3% cat > File1

Hello

mobey 4% cat > File2

World

mobey 5% nachos -cp File1 File1

Machine halting!

mobey 6% nachos -cp File2 File2

Machine halting!

CS350 Operating Systems Winter 2005

NachOS 40

File System Command Line Example (part 5)

mobey 7% nachos -D

Bit map file header:

FileHeader contents. File size: 128.

File blocks:

2

File contents:

\ff\1\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0\0

CS350 Operating Systems Winter 2005

NachOS 41

File System Command Line Example

Directory file header:
FileHeader contents. File size: 200.
File blocks:
3 4
File contents:
\1\0\0\0\5\0\0\0File1\0\0\0\0\0\0\0\1\0\0\0
\7\0\0\0File2\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0

CS350 Operating Systems Winter 2005

NachOS 42

File System Command Line Example (part 6)

Bitmap set:
0, 1, 2, 3, 4, 5, 6, 7, 8,
Directory contents:
Name: File1, Sector: 5
FileHeader contents. File size: 6.
File blocks:
6
File contents:
Hello\a
Name: File2, Sector: 7
FileHeader contents. File size: 6.
File blocks:
8
File contents:
World\a

Machine halting!

CS350 Operating Systems Winter 2005

