
Processor Scheduling 1

Scheduling Criteria

CPU utilization: keep the CPU as busy as possible

throughput: rate at which tasks are completed

response time/turnaround time: time required to finish a task

fairness

A “task” might be a single CPU burst, a thread, or an application-
level service request.

CS350 Operating Systems Winter 2005

Processor Scheduling 2

The Nature of Program Executions

• A running threads can be modeled as alternating series of CPU bursts and I/O
bursts

– during a CPU burst, a thread is executing instructions

– during an I/O burst, a thread is waiting for an I/O operation to be
performed and is not executing instructions

CS350 Operating Systems Winter 2005



Processor Scheduling 3

Preemptive vs. Non-Preemptive

• A non-preemptive scheduler runs only when the running thread gives up the
processor through its own actions, e.g.,

– the thread terminates

– the thread blocks because of an I/O or synchronization operation

– the thread performs a Yield system call (if one is provided by the operating
system)

• A preemptive scheduler may, in addition, force a running thread to stop
running

– typically, a premptive scheduler will be invoked periodically by a timer
interrupt handler, as well as in the circumstances listed above

– a running thread that is preempted is moved to the ready state

CS350 Operating Systems Winter 2005

Processor Scheduling 4

FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):

• non-premptive - each thread runs until it blocks or terminates

• FIFO ready queue

Round-Robin:

• preemptive version of FCFS

• running thread is preempted after a fixed time quantum, if it has not
already blocked

• preempted thread goes to the end of the FIFO ready queue

CS350 Operating Systems Winter 2005



Processor Scheduling 5

Shortest Job First (SJF) Scheduling

• non-preemptive

• ready threads are scheduled according to the length of their next CPU burst -
thread with the shortest burst goes first

• SJF minimizes average waiting time, but can lead to starvation

• SJF requires knowledge of CPU burst lengths

– Simplest approach is to estimate next burst length of each thread based on
previous burst length(s). For example, exponential average considers all
previous burst lengths, but weights recent ones most heavily:

Bi+1 = αbi + (1 − α)Bi

where Bi is the predicted length of the ith CPU burst, and bi is its actual
length, and 0 ≤ α ≤ 1.

• Shortest Remaining Time First is a preemptive variant of SJF. Preemption
may occur when a new thread enters the ready queue.

CS350 Operating Systems Winter 2005

Processor Scheduling 6

FCFS Gantt Chart Example

0 4 8 12 16 20
time

Pa

Pb

Pc

Pd

Thread Pd (=2) "arrives" at time 5

Initial ready queue: Pa = 5 Pb = 8 Pc = 3

CS350 Operating Systems Winter 2005



Processor Scheduling 7

Round Robin Example

Initial ready queue: Pa = 5 Pb = 8 Pc = 3

0 4 8 12 16 20
time

Pa

Pb

Pc

Pd

Thread Pd (=2) "arrives" at time 5

Quantum = 2

CS350 Operating Systems Winter 2005

Processor Scheduling 8

SJF Example

Initial ready queue: Pa = 5 Pb = 8 Pc = 3

0 4 8 12 16 20
time

Pa

Pb

Pc

Pd

Thread Pd (=2) "arrives" at time 5

CS350 Operating Systems Winter 2005



Processor Scheduling 9

SRTF Example

Initial ready queue: Pa = 5 Pb = 8 Pc = 3

0 4 8 12 16 20
time

Pa

Pb

Pc

Pd

Thread Pd (=2) "arrives" at time 5

CS350 Operating Systems Winter 2005

Processor Scheduling 10

Highest Response Ratio Next

• non-preemptive

• response ratio is defined for each ready thread as:

w + b

b

where b is the CPU burst time and w is waiting time

• scheduler chooses the thread with the highest response ratio (choose smallest
b in case of a tie)

• HRRN is an example of a heuristic that blends SJF and FCFS

CS350 Operating Systems Winter 2005



Processor Scheduling 11

HRRN Example

Initial ready queue: Pa = 5 Pb = 8 Pc = 3

0 4 8 12 16 20
time

Pa

Pb

Pc

Pd

Thread Pd (=4) "arrives" at time 5

CS350 Operating Systems Winter 2005

Processor Scheduling 12

Prioritization

• a scheduler may be asked to take process or thread priorities into account

• for example, priorities could be based on

– user classification

– application classification

– application specification (e.g., NachOS SetPriority)

• scheduler can:

– always choose higher priority threads over lower priority thread

– use any scheduling heuristic to schedule threads of equal priority

• low priority threads risk starvation. If this is not desired, scheduler must have
a mechanism for elevating the priority of low priority threads that have waited
a long time

CS350 Operating Systems Winter 2005



Processor Scheduling 13

Multilevel Feedback Queues

• gives priority to interactive threads (those with short CPU bursts)

• scheduler maintains several ready queues

• scheduler never chooses a thread in queue i if there are threads in any queue
j < i.

• threads in queue i use quantum qi, and qi < qj if i < j

• newly ready threads go in to queue 0

• a level i thread that is preempted goes into the level i + 1 ready queue

CS350 Operating Systems Winter 2005

Processor Scheduling 14

3 Level Feedback Queue State Diagram

blocked

ready(0) run(0)

ready(1)

ready(2)

run(1)

run(2)

block

block

block

preempt

preempt

preempt

dispatch

dispatch

dispatch

unblock

CS350 Operating Systems Winter 2005



Processor Scheduling 15

Lottery Scheduling

• randomized proportional share resource allocation

• resource rights represented by lottery tickets, allocation determined by lottery

– resource granted to holder of winning ticket

• probabilistically fair with p = t/T

– p = probability of allocation, t = tickets held, T = total tickets

– avoid starvation by ensuring t > 0

• uniformly-distributed pseudo-random number generator (10 lines on MIPS)

• can proportionally assign other resources (e.g., memory, bandwidth)

• “Lottery Scheduling: Flexible Proportional-Share Resource Management”,
Waldspurger and Weihl, Operating System Design and Implementation, 1994.

CS350 Operating Systems Winter 2005

Processor Scheduling 16

Processor Scheduling Summary

FCFS:

+ simple, low overhead

+ no starvation

- can give poor response times for interactive processes

RR:

+ no starvation

+ reduced waiting time variance

+ good response times for interactive processes

SJF and SRTF:

+ best response times

- depends on burst length estimates

- starvation is possible

CS350 Operating Systems Winter 2005



Processor Scheduling 17

Processor Scheduling Summary

HRRN:

+ no starvation

+ good response times

- depends on burst length estimates

Multilevel Feedback Queues:

+ flexible

+ good response times for interactive processes

- compute-intensive processes can starve

CS350 Operating Systems Winter 2005

Processor Scheduling 18

Other Scheduling Issues

short term scheduling: what has been covered so far

medium term scheduling: suspension/resumption of partially executed processes

• usually because a resource, especially memory, is overloaded

• suspended process releases resources

• operating system may also provide mechanisms for applications or users
to request suspension/resumption of processes

long term scheduling: process admission control to limit the degree of
multiprogramming

CS350 Operating Systems Winter 2005



Processor Scheduling 19

Scheduling States Including Suspend/Resume

ready running

blocked

suspended/
ready

suspended/
blocked

dispatch

quantum expires

suspend

resume

suspend

suspend

resume

CS350 Operating Systems Winter 2005


