
Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each
processor.

• On uniprocessors, only one thread executes at a time. However, because of
preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on unipro-
cessors.

CS350 Operating Systems Winter 2005

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a variety of ways:

– Threads share access (though the operating system) to system devices.

– Threads in the same process share access to program variables in their
process’s address space.

• A common synchronization problem is to enforce mutual exclusion, which
means making sure that only thread at a time uses a shared object, e.g., a
variable or a device.

• The part of a program in which the shared object is accessed is called a
critical section.

CS350 Operating Systems Winter 2005

Synchronization 3

Critical Section Example (Part 1)

int IntList::RemoveFront() {

ListElement *element = first;

ASSERT(!IsEmpty());

int num = first->item;

if (first == last) { first = last = NULL; }

else { first = element->next; }

numInList--;

delete element;

return num;

}

The RemoveFront method is a critical section. It may not
work properly if two threads call it at the same time on the same
IntList. (Why?)

CS350 Operating Systems Winter 2005

Synchronization 4

Critical Section Example (Part 2)

void IntList::Append(int item) {

ListElement *element = new ListElement(item);

ASSERT(!IsInList(item));

if (IsEmpty()) {

first = element; last = element;

} else {

last->next = element; last = element;

}

numInList++;

}

The Append method is part of the same critical section as
RemoveFront. It may not work properly if two threads call it
at the same time, or if a thread calls it while another has called
RemoveFront

CS350 Operating Systems Winter 2005

Synchronization 5

Peterson’s Mutual Exclusion Algorithm

boolean flag[2]; /* shared, initially false */

int turn; /* shared */

flag[i] = true; /* in one process, i = 0 and j = 1 */

turn = j; /* in the other, i = 1 and j = 0 */

while (flag[j] && turn == j) { } /* busy wait */

critical section /* e.g., call to RemoveFront */

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but works only for
two processes. (Why?)

CS350 Operating Systems Winter 2005

Synchronization 6

Mutual Exclusion Using Special Instructions

• Software solutions to the critical section problem (e.g., Peterson’s algorithm)
assume only atomic load and atomic store.

• Simpler algorithms are possible if more complex atomic operations are
supported by the hardware. For example:

Test and Set: set the value of a variable, and return the old value

Swap: swap the values of two variables

• On uniprocessors, mutual exclusion can also be achieved by disabling
interrupts during the critical section. (Normally, user programs cannot do this,
but the kernel can.)

CS350 Operating Systems Winter 2005

Synchronization 7

Mutual Exclusion with Test and Set

boolean lock; /* shared, initially false */

while (TestAndSet(&lock,true)) { } /* busy wait */

critical section /* e.g., call to RemoveFront */

lock = false;

Works for any number of threads, but starvation is a possibility.

CS350 Operating Systems Winter 2005

Synchronization 8

Semaphores

• A semaphore is a synchronization primitive that can be used to solve the
critical section problem, and many other synchronization problems too

• A semaphore is an object that has an integer value, and that support two
operations:

P: if the semaphore value is non-zero, decrement the value. Otherwise, wait
until the value is non-zero and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores: can take on any non-negative value

binary semaphores: take on only the values 0 and 1. (V on a binary
semaphore with value 1 has no effect.)

By definition, the P and V operations of a semaphore are atomic.

CS350 Operating Systems Winter 2005

Synchronization 9

Mutual Exclusion Using a Binary Semaphore

binarySemaphore s; /* initial value is 1 */

P(s);

critical section /* e.g., call to RemoveFront */

V(s);

CS350 Operating Systems Winter 2005

Synchronization 10

Producer/Consumer Using a Counting Semaphore

countingSemaphore s; /* initial value is 0 */

item buffer[infinite]; /* huge buffer, initially empty */

Producer’s Pseudo-code:

add item to buffer

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from buffer

If mutual exclusion is required for adding and removing items from
the buffer, this can be provided using a second semaphore. (How?)

CS350 Operating Systems Winter 2005

Synchronization 11

Producer/Consumer with a Bounded Buffer

countingSemaphore full; /* initial value is 0 */

countingSemaphore empty; /* initial value is N */

item buffer[N]; /* buffer with capacity N */

Producer’s Pseudo-code:

P(empty);

add item to buffer

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from buffer

V(empty);

CS350 Operating Systems Winter 2005

Synchronization 12

Implementing Semaphores

void P(s) {

start critical section

while (s == 0) { /* busy wait */

end critical section

start critical section }

s = s - 1;

end critical section }

void V(s) {

start critical section

s = s + 1;

end critical section }

Any mutual exclusion technique (e.g., Dekker, Lamport, test and
set) can be used to protect the critical sections. However, starvation
is possible with this implementation.

CS350 Operating Systems Winter 2005

Synchronization 13

Nachos Semaphore Class

class Semaphore {

public:

Semaphore(char* debugName, int initialValue);

˜Semaphore();

char* getName() { return name;}

void P();

void V();

void SelfTest();

private:

char* name; // useful for debugging

int value; // semaphore value, always >= 0

List<Thread *> *queue;

};

CS350 Operating Systems Winter 2005

Synchronization 14

Nachos Semaphore P()

void Semaphore::P() {

Interrupt *interrupt = kernel->interrupt;

Thread *currentThread = kernel->currentThread;

IntStatus oldLevel = interrupt->SetLevel(IntOff);

if(value <= 0) {

queue->Append(currentThread);

currentThread->Sleep(FALSE);

} else { value--; }

(void) interrupt->SetLevel(oldLevel);

}

CS350 Operating Systems Winter 2005

Synchronization 15

Nachos Semaphore V()

void Semaphore::V() {

Interrupt *interrupt = kernel->interrupt;

IntStatus oldLevel = interrupt->SetLevel(IntOff);

if (!queue->IsEmpty()) {

kernel->scheduler->ReadyToRun(queue->RemoveFront());

} else { value++; }

(void) interrupt->SetLevel(oldLevel);

}

CS350 Operating Systems Winter 2005

Synchronization 16

Monitors

• a monitor is a programming language construct that supports synchronized
access to data

• a monitor is essentially an object for which

– object state is accessible only through the object’s methods

– only one method may be active at a time

• if two threads attempt to execute methods at the same time, one will be
blocked until the other finishes

• inside of a monitor, so called condition variables can be declared and used

CS350 Operating Systems Winter 2005

Synchronization 17

Condition Variable

• a condition variable is an object that support two operations:

wait: causes the calling thread to block, and to release the monitor

signal: if threads are blocked on the signaled condition variable then unblock
one of them, otherwise do nothing

• a thread that has been unblocked by signal is outside of the monitor and it
must wait to re-enter the monitor before proceeding.

• in particular, it must wait for the thread that signalled it

This describes Mesa-type monitors. There are other types on mon-
itors, notably Hoare monitors, with different semantics for wait
and signal.

CS350 Operating Systems Winter 2005

Synchronization 18

Bounded Buffer Using a Monitor

item buffer[N]; /* buffer with capacity N */

int count; /* initially 0 */

condition notfull,notempty;

Produce(item) {

while (count == N) { wait(notfull); }

add item to buffer

count = count + 1;

signal(notempty);

}

Produce is implicitly executed atomically, because it is a monitor
method.

CS350 Operating Systems Winter 2005

Synchronization 19

Bounded Buffer Using a Monitor (cont’d)

Consume(item) {

while (count == 0) { wait(notempty); }

remove item from buffer

count = count - 1;

signal(notfull);

}

Consume is implicitly executed atomically, because it is a mon-
itor method. Notice that while, rather than if, is used in both
Produce and Consume. This is important. (Why?)

CS350 Operating Systems Winter 2005

Synchronization 20

Simulating Monitors with Semaphores and Condition Variables

• Use a single binary semaphore (or Nachos “Lock”) to provide mutual
exclusion.

• Each method must start by acquiring the mutex semaphore, and must release
it on all return paths.

• Signal only while holding the mutex semaphore.

• Re-check the wait condition after each wait.

• Return only (the values of) variables that are local to the method.

CS350 Operating Systems Winter 2005

Synchronization 21

Producer Implemented with Locks and Condition Variables (Example)

item buffer[N]; /* buffer with capacity N */

int count; /* initially 0 */

Condition notfull,notempty;

Lock mutex; /* for mutual exclusion */

Produce(item) {

mutex.Acquire();

while (count == N) {

notfull.Wait(mutex); }

add item to buffer

count = count + 1;

notempty.Signal(mutex);

mutex.Release();

}

CS350 Operating Systems Winter 2005

Synchronization 22

Deadlocks

• A simple example. Suppose a machine has 64MB of memory. The following
sequence of events occurs.

1. Process A starts, using 30MB of memory.

2. Process B starts, also using 30MB of memory.

3. Process A requests an additional 8MB of memory. The kernel blocks
process A’s thread, since there is only 4 MB of available memory.

4. Process B requests an additional 5MB of memory. The kernel blocks
process B’s thread, since there is not enough memory available.

These two processes are deadlocked - neither process can make
progress. Waiting will not resolve the deadlock. The processes are
permanently stuck.

CS350 Operating Systems Winter 2005

Synchronization 23

Resource Allocation Graph (Example)

P1 P2 P3

R1 R2 R3

R4 R5

resource request resource allocation

Is there a deadlock in this system?

CS350 Operating Systems Winter 2005

Synchronization 24

Resource Allocation Graph (Another Example)

P1 P2 P3

R1 R2 R3

R4 R5

Is there a deadlock in this system?

CS350 Operating Systems Winter 2005

Synchronization 25

Deadlock Prevention

No Hold and Wait: prevent a process from requesting resources if it currently
has resources allocated to it. A process may hold several resources, but to do
so it must make a single request for all of them.

Preemption: to wait for a resource, a process must release and (after waiting)
re-acquire any resources it currently holds.

Resource Ordering: Order (e.g., number) the resource types, and require that
each process acquire resources in increasing resource type order. That is, a
process may make no requests for resources of type less than or equal to i

once the process has requested resources of type i.

CS350 Operating Systems Winter 2005

Synchronization 26

Deadlock Detection and Correction

• main idea: the system maintains the resource allocation graph and tests it to
determine whether there is a deadlock. If there is, the system must recover
from the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the
processes involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can
simply test periodically. Deadlocks persist, so periodic detection will not
“miss” them.

Deadlock detection and deadlock correction are both costly. This
approach makes sense only if deadlocks are expected to be infre-
quent.

CS350 Operating Systems Winter 2005

Synchronization 27

Detecting Deadlock in a Resource Allocation Graph

• System State Notation:

– Ri: request vector for process Pi

– Ai: current allocation vector for process Pi

– U : unallocated (available) resource vector

• Additional Algorithm Notation:

– T : scratch resource vector

– fi: algorithm is finished with process Pi? (boolean)

CS350 Operating Systems Winter 2005

Synchronization 28

Detecting Deadlock (cont’d)

/* initialization */

T = U

fi is false if Ai > 0, else true

/* can each process finish? */

while ∃ i (¬ fi ∧ Ri ≤ T) {

T = T + Ai;

fi = true

}

/* if not, there is a deadlock */

if ∃ i (¬ fi) then report deadlock

else report no deadlock

CS350 Operating Systems Winter 2005

Synchronization 29

Deadlock Detection, Positive Example

• R1 = (0, 1, 0, 0, 0)

• R2 = (0, 0, 0, 0, 1)

• R3 = (0, 1, 0, 0, 0)

• A1 = (1, 0, 0, 0, 0)

• A2 = (0, 2, 0, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 1, 1, 0)

The deadlock detection algorithm will terminate with f1 ==

f2 == f3 == false, so this system is deadlocked.

CS350 Operating Systems Winter 2005

Synchronization 30

Deadlock Detection, Negative Example

• R1 = (0, 1, 0, 0, 0)

• R2 = (1, 0, 0, 0, 0)

• R3 = (0, 0, 0, 0, 0)

• A1 = (1, 0, 0, 1, 0)

• A2 = (0, 2, 1, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 0, 0, 0)

This system is not in deadlock. It is possible that the processes will
run to completion in the order P3, P1, P2.

CS350 Operating Systems Winter 2005

