
Virtual Memory 1

Virtual Memory

Goals:

• Allow virtual address spaces that are larger than the physical address space.

• Allow greater multiprogramming levels by using less of the available
(primary) memory for each process.

Method:

• Allow pages (or segements) from the virtual address space to be stored in
secondary memory, as well as primary memory.

• Move pages (or segements) between secondary and primary memory to that
they are in primary memory when they are needed.

CS350 Operating Systems Winter 2005

Virtual Memory 2

The Memory Hierarchy

L1 Cache

(disk)
memory

secondary

10 9primary
memory

L2 Cache 10 6

10 12

10 4

SIZE (bytes)

10 8

10 6

BANDWIDTH (bytes/sec)

CS350 Operating Systems Winter 2005

Virtual Memory 3

Large Virtual Address Spaces

• Virtual memory allows for very large virtual address spaces, and very large
virtual address spaces require large page tables.

• example: 248 byte virtual address space, 8Kbyte (213 byte) pages, 4 byte page
table entries means

248

213
22 = 237 bytes per page table

• page tables must be in memory and physically contiguous

• some solutions:

– multi-level page tables - page the page tables

– inverted page tables

CS350 Operating Systems Winter 2005

Virtual Memory 4

Two-Level Paging

m bits

register
page table base

frame # offsetpage # offsetpage #

physical address (m bits)

virtual address (v bits)

level 1

level 2

page table

page tables

CS350 Operating Systems Winter 2005

Virtual Memory 5

Inverted Page Tables

• A normal page table maps virtual pages to physical frames. An inverted page
table maps physical frames to virtual pages.

• Other key differences between normal and inverted page tables:

– there is only one inverted page table, not one table per process

– entries in an inverted page table must include a process identifier

• An inverted page table only specifies the location of virtual pages that are
located in memory. Some other mechanism (e.g., regular page tables) must be
used to locate pages that are not in memory.

CS350 Operating Systems Winter 2005

Virtual Memory 6

Paging Policies

When to Page?:
Demand paging brings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be used, and prefetch them.

What to Replace?:
Unless there are unused frames, one page must be replaced for each page that
is loaded into memory. A replacement policy specifies how to determine
which page to replace.

Similar issues arise if (pure) segmentation is used, only the unit of
data transfer is segments rather than pages. Since segments may
vary in size, segmentation also requires a placement policy, which
specifies where, in memory, a newly-fetched segment should be
placed.

CS350 Operating Systems Winter 2005

Virtual Memory 7

Paging Mechanism

• When virtual memory is used, a valid bit (V) in each page table entry is used
track which pages are in (primary) memory, and which are not.

V = 1: valid entry which can be used for translation

V = 0: invalid entry. If the MMU encounters an invalid page table entry, it
raises a page fault exception.

• To handle a page fault exception, the operating system must:

– Determine which page table entry caused the exception. (In NachOS, and
in real MIPS processors, the MMU places the offending virtual address
into the BadVAddrReg register.)

– Ensure that that page is brought into memory.

On return from the exception handler, the instruction that resulted in the page
fault will be retried.

• If (pure) segmentation is being used, there will a valid bit in each segment
table entry to indicated whether the segment is in memory.

CS350 Operating Systems Winter 2005

Virtual Memory 8

A Simple Replacement Policy: FIFO

• the FIFO policy: replace the page that has been in memory the longest

• a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x

CS350 Operating Systems Winter 2005

Virtual Memory 9

Other Replacement Policies

• FIFO is simple, but it does not consider:

Recency of Use: when was a page last used?

Frequency of Use: how often as a page been used?

Cleanliness: has the page been changed while it is in memory?

• The principle of locality suggests that usage ought to be considered in a
replacement decision.

• Cleanliness may be worth considering for performance reasons.

CS350 Operating Systems Winter 2005

Virtual Memory 10

Locality

• Locality is a property of the page reference string. In other words, it is a
property of programs themselves.

• Temporal locality says that pages that have been used recently are likely to be
used again.

• Spatial locality says that pages “close” to those that have been used are likely
to be next.

In practice, page reference strings exhibit strong locality. Why?

CS350 Operating Systems Winter 2005

Virtual Memory 11

Least Recently Used (LRU) Page Replacement

• LRU is based on the principle of temporal locality: replace the page that has
not been used for the longest time

• To implement LRU, it is necessary to track the each page’s recency of use.
For example: maintain a list of in-memory pages, and move a page to the
front of the list when it is used.

• Although LRU and variants have many applications, LRU often considered to
be impractical for use as a replacement policy in virtual memory systems.
Why?

CS350 Operating Systems Winter 2005

Virtual Memory 12

The “Use” Bit

• A use bit (or reference bit) is a bit found in each page table entry that:

– is set by the MMU each time the page is used, i.e., each time the MMU
translates a virtual address on that page

– can be read and updated by the operating system

• Page table entries in NachOS include a use bit.

The use bit provides a small amount of efficiently-maintainable
usage information that can be exploited by a page replacement al-
gorithm.

CS350 Operating Systems Winter 2005

Virtual Memory 13

The Clock Replacement Algorithm

• The clock algorithm (also known as “second chance”) is one of the simplest
algorithms that exploits the use bit.

• Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

• The clock algorithm can be visualized as a victim pointer that cycles through
the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames

CS350 Operating Systems Winter 2005

Virtual Memory 14

Frequency-based Page Replacement

• Another approach to page replacement is to count references to pages. The
counts can form the basis of a page replacement decision.

• Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

• Any frequency-based policy requires a reference counting mechanism, e.g.,
MMU increments a counter each time an in-memory page is referenced.

• Pure frequency-based policies have several potential drawbacks:

– Old references are never forgotten. This can be addressed by periodically
reducing the reference count of every in-memory page.

– Freshly loaded pages have small reference counts and are likely victims -
ignores temporal locality.

CS350 Operating Systems Winter 2005

Virtual Memory 15

Page Cleanliness: the Dirty Bit

• A page is dirty if it has been changed since it was loaded into memory.

• A dirty page is more costly to replace than a clean page. (Why?)

• The MMU identifies dirty pages by setting a dirty bit in the page table entry
when the contents of the page change. Operating system clears the dirty bit
when it cleans the page.

• The dirty bit potentially has two roles:

– Indicates which pages need to be cleaned.

– Can be used to influence the replacement policy.

CS350 Operating Systems Winter 2005

Virtual Memory 16

Enhanced Second Chance Replacement Algorithm

• Classify pages according to their use and dirty bits:

(0,0): not recently used, clean.

(0,1): not recently used, dirty.

(1,0): recently used, clean

(1,1): recently used, dirty

• Algorithm:

1. Sweep once looking for (0,0) page. Don’t clear use bits while looking.

2. If none found, look for (0,0) or (0,1) page, this time clearing “use” bits
while looking.

CS350 Operating Systems Winter 2005

Virtual Memory 17

Page Cleaning

• A dirty page must be cleaned before it can be replaced, otherwise changes on
that page will be lost.

• Cleaning a page means copying the page to secondary storage.

• Cleaning is distinct from replacement.

• Page cleaning may be synchronous or asynchronous:

synchronous cleaning: happens at the time the page is replaced, during page
fault handling. Page is first cleaned by copying it to secondary storage.
Then a new page is brought in to replace it.

asynchronous cleaning: happens before a page is replaced, so that page fault
handling can be faster.

– asynchronous cleaning may be implemented by dedicated OS page
cleaning threads that sweep through the in-memory pages cleaning dirty
pages that they encounter.

CS350 Operating Systems Winter 2005

Virtual Memory 18

Prefetching

• Prefetching means moving virtual pages into memory before they are needed,
i.e., before a page fault results.

• The goal of prefetching is latency hiding: do the work of bring a page into
memory in advance, not while a process is waiting.

• To prefetch, the operating system must guess which pages will be needed.

• Hazards of prefetching:

– guessing wrong means the work that was done to prefetch the page was
wasted

– guessing wrong means that some other potentially useful page has been
replaced by a page that is not used

• most common form of prefetching is simple sequential prefetching: if a
process uses page x, prefetch page x + 1.

• sequential prefetching exploits spatial locality of reference

CS350 Operating Systems Winter 2005

Virtual Memory 19

Page Size Tradeoffs

• larger pages mean:

+ smaller page tables

+ better TLB “coverage”

+ more efficient I/O

- greater internal fragmentation

- increased chance of paging in unnecessary data

CS350 Operating Systems Winter 2005

Virtual Memory 20

Optimal Page Replacement

• There is an optimal page replacement policy for demand paging.

• The OPT policy: replace the page that will not be referenced for the longest
time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

• OPT requires knowledge of the future.

CS350 Operating Systems Winter 2005

Virtual Memory 21

Belady’s Anomaly

• FIFO replacement, 4 frames

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a e e e e d d

Frame 2 b b b b b b a a a a e

Frame 3 c c c c c c b b b b

Frame 4 d d d d d d c c c

Fault? x x x x x x x x x x

• FIFO example on Slide 8 with same reference string had 3 frames and only 9
faults.

More memory does not necessarily mean fewer page faults.

CS350 Operating Systems Winter 2005

Virtual Memory 22

Stack Policies

• Let B(m, t) represent the set of pages in a memory of size m at time t under
some given replacement policy, for some given reference string.

• A replacement policy is called a stack policy if, for all reference strings, all m

and all t:
B(m, t) ⊆ B(m + 1, t)

• If a replacement algorithm imposes a total order, independent of memory size,
on the pages and it replaces the largest (or smallest) page according to that
order, then it satisfies the definition of a stack policy.

• Examples: LRU is a stack algorithm. FIFO and CLOCK are not stack
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.

CS350 Operating Systems Winter 2005

Virtual Memory 23

Global vs. Local Page Replacement

• When the system’s page reference string is generated by more than one
process, should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardless
of the process to which each one “belongs”. A page requested by process
X may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. A replacement
policy is then applied separately to each process’s allocated space. A page
requested replace other pages that “belong” to process X.

CS350 Operating Systems Winter 2005

Virtual Memory 24

How Much Memory Does a Process Need?

• Principle of locality suggests that some portions of the process’s virtual
address space are more likely to be referenced than others.

• A refinement of this principle is the working set model of process reference
behaviour.

• According to the working set model, at any given time some portion of a
program’s address space will be heavily used and the remainder will not be.
The heavily used portion of the address space is called the working set of the
process.

• The working set of a process may change over time.

• The resident set of is the set of process pages that are located in memory.

Accoring to the working set model, if a process’s resident set in-
cludes its working set, it will rarely page fault.

CS350 Operating Systems Winter 2005

Virtual Memory 25

Resident Set Sizes (Example)

PID VSZ RSS COMMAND

805 13940 5956 /usr/bin/gnome-session

831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11

838 6964 2292 gnome-smproxy

840 14720 5008 gnome-settings-daemon

848 8412 3888 sawfish

851 34980 7544 nautilus

853 19804 14208 gnome-panel

857 9656 2672 gpilotd

867 4608 1252 gnome-name-service

CS350 Operating Systems Winter 2005

Virtual Memory 26

Refining the Working Set Model

• Define WS(t, ∆) to be the set of pages referenced by a given process during
the time interval (t − ∆, t). WS(t, ∆) is the working set of the process at
time t.

• Define |WS(t, ∆)| to be the size of WS(t, ∆), i.e., the number of distinct
pages referenced by the process.

• If the operating system could track WS(t, ∆), it could:

– use |WS(t, ∆)| to determine the number of frames to allocate to the
process under a local page replacement policy

– use WS(t, ∆) directly to implement a working-set based page
replacement policy: any page that is no longer in the working set is a
candidate for replacement

CS350 Operating Systems Winter 2005

Virtual Memory 27

Page Fault Frequency

• A more direct way to allocate memory to processes is to measure their page
fault frequencies - the number of page faults they generate per unit time.

• If a process’s page fault frequency is too high, it needs more memory. If it is
low, it may be able to surrender memory.

• The working set model suggests that a page fault frequency plot should have a
sharp “knee”.

CS350 Operating Systems Winter 2005

Virtual Memory 28

A Page Fault Frequency Plot

thresholds

page fault frequency curve

page fault
frequency

low

high

manyfew
frames allocated to process

process

CS350 Operating Systems Winter 2005

Virtual Memory 29

Thrashing and Load Control

• What is a good multiprogramming level?

– If too low: resources are idle

– If too high: too few resources per process

• A system that is spending too much time paging is said to be thrashing.
Thrashing occurs when there are too many processes competing for the
available memory.

• Thrashing can be cured by load shedding, e.g.,

– Killing processes (not nice)

– Suspending and swapping out processes (nicer)

CS350 Operating Systems Winter 2005

Virtual Memory 30

Swapping Out Processes

• Swapping a process out means removing all of its pages from memory, or
marking them so that they will be removed by the normal page replacement
process. Suspending a process ensures that it is not runnable while it is
swapped out.

• Which process(es) to suspend?

– low priority processes

– blocked processes

– large processes (lots of space freed) or small processes (easier to reload)

• There must also be a policy for making suspended processes ready when
system load has decreased.

CS350 Operating Systems Winter 2005

