
File Systems 1

Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– alternatively, a file may have some internal structure, e.g., a file may

consist of sequence of numbered records

– file may change size over time

– file has associated meta-data (attributes), in addition to the file name

∗ examples: owner, access controls, file type, creation and access

timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed,. . .

CS350 Operating Systems Winter 2009

File Systems 2

File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in

subsequent operations to identify the file. (Why is this done?)

• read, write

– must specify which file to read, which part of the file to read, and where to

put the data that has been read (similar for write).

– often, file position is implicit (why?)

• seek

• get/set file attributes, e.g., Unixfstat, chmod

CS350 Operating Systems Winter 2009

File Systems 3

File Read

��
��
��
��

��
��
��
��

���
���
���

���
���
���

virtual address
 space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)

CS350 Operating Systems Winter 2009

File Systems 4

File Position

• may be associated with the file, with a process, or with a file descriptor (Unix

style)

• read and write operations

– start from the current file position

– update the current file position

• this makes sequential file I/O easy for an application to request

• for non-sequential (random) file I/O, use:

– seek, to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unixpread, pwrite:

pread(fileId,vaddr,length,filePosition)

CS350 Operating Systems Winter 2009

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first100 ∗ 512 bytes of a file,512 bytes at a time.

CS350 Operating Systems Winter 2009

File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

lseek(f,99*512,SEEK_SET);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

lseek(f,-1024,SEEK_CUR);

}

close(f);

Read the first100 ∗ 512 bytes of a file,512 bytes at a time, in

reverse order.

CS350 Operating Systems Winter 2009

File Systems 7

File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second512 byte chunk of a file, until50 have been

read.

CS350 Operating Systems Winter 2009

File Systems 8

Memory-Mapped Files

• generic interface:

vaddr ← mmap(file descriptor,fileoffset,length)

munmap(vaddr,length)

• mmap call returns the virtual address to which the file is mapped

• munmap call unmaps mapped files within the specified virtual addressrange

Memory-mapping is an alternative to the read/write file interface.

CS350 Operating Systems Winter 2009

File Systems 9

Memory Mapping Illustration

virtual address
 space

length

vaddr

length

fileoffset

file

CS350 Operating Systems Winter 2009

File Systems 10

Memory Mapping Update Semantics

• what should happen if the virtual memory to which a file has been mapped is

updated?

• some options:

– prohibit updates (read-only mapping)

– eager propagation of the update to the file (too slow!)

– lazy propagation of the update to the file

∗ user may be able to request propagation (e.g., Posixmsync()

∗ propagation may be guaranteed bymunmap()

– allow updates, but do not propagate them to the file

CS350 Operating Systems Winter 2009

File Systems 11

Memory Mapping Concurrency Semantics

• what should happen if a memory mapped file is updated?

– by a process that has mmapped the same file

– by a process that is updating the file using awrite() system call

• options are similar to those on the previous slide. Typically:

– propagate lazily: processes that have mapped the filemayeventually see

the changes

– propagate eagerly: other processes will see the changes

∗ typically implemented by invalidating other process’s page table entries

CS350 Operating Systems Winter 2009

File Systems 12

File Names

• application-visible objects (e.g., files, directories) are given names

• the file system is responsible for associating names with objects

• the namespace is typically structured, often as a tree or a DAG

• namespace structure provides a way for users and applications to organize and

manage information

• in a structured namespace, objects may be identified bypathnames, which

describe a path from a root object to the object being identified, e.g.:

/home/kmsalem/courses/cs350/notes/filesys.ps

CS350 Operating Systems Winter 2009

File Systems 13

Hierarchical Namespace Example

= directory

= file

Key

x
y

z

a

b
ck l

f g

a b

CS350 Operating Systems Winter 2009

File Systems 14

Hard Links

• ahard link is an association between a name and an underlying file (or

directory)

• typically, when a file is created, a single link is created to the that file as well

(else the file would be difficult to use!)

– POSIX example:creat(pathname,mode) creates both a new empty
file object and a link to that object (usingpathname)

• some file systems allow additional hard links to be made to existing files. This

allows more than one name from the file system’s namespace to refer the
same underlying object.

– POSIX example:link(oldpath,newpath) creates a new hard link,

usingnewpath, to the underlying object identified byoldpath

File systems ensurereferential integrityfor hard links. A hard link

refers to the object it was created for until the link is explicitly

destroyed. (What are the implications of this?)

CS350 Operating Systems Winter 2009

File Systems 15

Hard Link Illustration

m

link(/y/k/g, /z/m)

x
y

z

a

b
ck l

f g

a b

Hard links are a way to createnon-hierarchical structurein the

namespace. Hard link creation may be restricted to restrictthe

kinds of structure that applications can create. Example: no hard

links to directories.

CS350 Operating Systems Winter 2009

File Systems 16

Unlink Example

m

link(/y/k/g, /z/m)

unlink(/y/k/g)

x
y

z

a

b
ck l

f

a b

Removing thelast link to a file causes the file itself to be deleted.

Deleting a file that has a link would destroy the referential integrity

of the link.

CS350 Operating Systems Winter 2009

File Systems 17

Symbolic Links

• aSymbolic link, or soft link, is an association between two names in the file

namespace. Think of it is a way of defining a synonym for a filename.

– symlink(oldpath,newpath) creates a symbolic link from

newpath to oldpath, i.e.,newpath becomes a synonym for

oldpath.

• symbolic links relate filenames to filenames, while hard links relate filenames

to underlying file objects!

• referential integrity isnotpreserved for symbolic links, e.g., the system call

above can succeed even if there is no object namedoldpath

CS350 Operating Systems Winter 2009

File Systems 18

Soft Link Example

/y/k/g

symlink(/y/k/g, /z/m)

x
y

z

a

b
ck l

f g

a b

m

/y/k/g still has only one hard link after thesymlink call.

A new symlink object records the association between/z/m

and/y/k/g. open(/z/m) will now have the same effect as

open(/y/k/g).

CS350 Operating Systems Winter 2009

File Systems 19

Soft Link Example with Unlink

/y/k/g

symlink(/y/k/g, /z/m)

unlink(/y/k/g)

"dangling" soft link

x
y

z

a

b
ck l

f

a b

m

A file is deleted by thisunlink call. An attempt to

open(/z/m) after theunlink will result in an error. If anew

file called/y/k/g is created, a subsequentopen(/z/m) will

open the new file.

CS350 Operating Systems Winter 2009

File Systems 20

Linux Link Example (1 of 2)

% cat > file1
This is file1.
% ls -li
685844 -rw------- 1 kmsalem kmsalem 15 2008-08-20 file1
% ln file1 link1
% ln -s file1 sym1
% ls -li
685844 -rw------- 2 kmsalem kmsalem 15 2008-08-20 file1
685844 -rw------- 2 kmsalem kmsalem 15 2008-08-20 link1
685845 lrwxrwxrwx 1 kmsalem kmsalem 5 2008-08-20 sym1 -> file1
% cat file1
This is file1.
% cat link1
This is file1.
% cat sym1
This is file1.

A file, a hard link, a soft link.

CS350 Operating Systems Winter 2009

File Systems 21

Linux Link Example (2 of 2)

% /bin/rm file1
% ls -li
685844 -rw------- 1 kmsalem kmsalem 15 2008-08-20 link1
685845 lrwxrwxrwx 1 kmsalem kmsalem 5 2008-08-20 sym1 -> file1
% cat link1
This is file1.
% cat sym1
cat: sym1: No such file or directory
% cat > file1
This is a brand new file1.
% ls -li
685846 -rw------- 1 kmsalem kmsalem 27 2008-08-20 file1
685844 -rw------- 1 kmsalem kmsalem 15 2008-08-20 link1
685845 lrwxrwxrwx 1 kmsalem kmsalem 5 2008-08-20 sym1 -> file1
% cat link1
This is file1.
% cat sym1
This is a brand new file1.

Different behaviour for hard links and soft links.

CS350 Operating Systems Winter 2009

File Systems 22

Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS/Windows: use two-part file names: file system name,pathname

– example: C:\kmsalem\cs350\schedule.txt

Unix: merge file graphs into a single graph

– Unix mount system call does this

CS350 Operating Systems Winter 2009

File Systems 23

Unix mount Example

a

q

r
x

g

a

q

r
x

g

"root" file system file system X

result of mount(file system X, /x/a)

x
y

z

a

b
ck la b

x
y

z

a

b
ck la b

CS350 Operating Systems Winter 2009

File Systems 24

Links and Multiple File Systems

• a hard link associates a name in the file system namespace withan file or

directory object in that file system

• typically, hard links cannot cross file system boundaries

• for example, even after the mount operation illustrated on the previous slide,

link(/x/a/x/g,/z/d) would result in an error, because the new link,

which is in the root file system refers to an object in file system X

• soft links do not have this limitation

• for example, after the mount operation illustrated on the previous slide:

– symlink(/x/a/x/g,/z/d) would succeed

– open(/z/d) would succeed, with the effect of opening/z/a/x/g.

• even if thesymlink operation were to occurbeforethemount command, it

would succeed

CS350 Operating Systems Winter 2009

File Systems 25

File System Implementation

• space management

• file indexing (how to locate file data and meta-data)

• directories

• links

• buffering, in-memory data structures

• persistence

CS350 Operating Systems Winter 2009

File Systems 26

Space Allocation and Layout

• space may be allocated in fixed-size chunks, or in chunks of varying size

• fixed-size chunks: simple space management, but internal fragmentation

• variable-size chunks: external fragmentation

fixed−size allocation

variable−size allocation

• layoutmatters! Try to lay a file out sequentially, or in large sequential extents

that can be read and written efficiently.

CS350 Operating Systems Winter 2009

File Systems 27

File Indexing

• in general, a file will require more than one chunk of allocated space

• this is especially true because files can grow

• how to find all of a file’s data?

chaining:

– each chunk includes a pointer to the next chunk

– OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example

– like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example

– for each file, maintain a table of pointers to the file’s blocksor extents

CS350 Operating Systems Winter 2009

File Systems 28

Chaining

CS350 Operating Systems Winter 2009

File Systems 29

External Chaining (File Access Table)

external chain
(file access table)

CS350 Operating Systems Winter 2009

File Systems 30

Per-File Indexing

CS350 Operating Systems Winter 2009

File Systems 31

Internal File Identifiers

• typically, a file system will assign a unique internal identifier to each file,

directory or other object

• given an identifer, the file system candirectly locate a record containing key

information about the file, such as:

– the per-file index to the file data (if per-file indexing is used), or the

location of the file’s first data block (if chaining is used)

– file meta-data (or a reference to the meta-data), such as

∗ file owner

∗ file access permissions

∗ file acesss timestamps

∗ file type

• for example, a file identifier might be a number which indexes an on-disk

array of file records

CS350 Operating Systems Winter 2009

File Systems 32

Example: Unix i-nodes

• an i-node is a record describing a file

• each i-node is uniquely identified by an i-number, which determines its

physical location on the disk

• an i-node is afixed sizerecord containing:

file attribute values

– file type

– file owner and group

– access controls

– creation, reference and update timestamps

– file size

direct block pointers: approximately 10 of these

single indirect block pointer

double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Winter 2009

File Systems 33

i-node Diagram

single indirect

double indirect

triple indirect

direct

direct

direct

attribute values

i−node (not to scale!) data blocks

indirect blocks

CS350 Operating Systems Winter 2009

File Systems 34

Directories

• A directory consists of a set of entries, where each entry is arecord that

includes:

– a file name (component of a path name)

– the internal file identifier (e.g., i-number) of the file

• A directory can be implemented as a special type of file. The directory entries

are the contents of the file.

• The file system should not allow directory files to be directlywritten by

application programs. Instead, the directory is updated bythe file system as

files are created and destroyed

CS350 Operating Systems Winter 2009

File Systems 35

Implementing Hard Links

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

1. find out the internal file identifier for/y/k/g

2. create a new entry in directory/z

– file name in new entry ism

– file identifier (i-number) in the new entry is the one discovered in step 1

CS350 Operating Systems Winter 2009

File Systems 36

Implementing Soft Links

• soft links can be implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a newsymlinkfile

– add a new entry in directory/z

∗ file name in new entry ism

∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the newsymlink file

• change the behaviour of theopen system call so that when the symlink file is

encountered duringopen(/z/m), the file/y/k/g will be opened instead.

CS350 Operating Systems Winter 2009

File Systems 37

Main Memory Data Structures

0

0

open file tables
per process system open file table block buffer cache

Secondary Memory (persistent)

Primary Memory (volatile)

cached i−nodes

(cached copies of blocks)

data blocks, index blocks, i−nodes, etc.

1
2
3

3
2
1

CS350 Operating Systems Winter 2009

File Systems 38

Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because a failure, some but not all of these changes are reflected on

the disk?

CS350 Operating Systems Winter 2009

File Systems 39

Fault Tolerance

• special-purpose consistency checkers (e.g., Unixfsck in Berkeley FFS,

Linux ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry

∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences

of changes can be written to disk in a single operation

– afterchanges have been journaled, update the disk data structures

(write-ahead logging)

– after a failure, redo journaled updates in case they were notdone before

the failure

CS350 Operating Systems Winter 2009

