Interprocess Communication 1

Interprocess Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:

* shared virtual memory
x shared files

— processes must agree on a name (e.g., a file name, or a shéwmed vi
memory key) in order to establish communication
e message based
— signals

— sockets

— pipes

CS350 Operating Systems Winter 2009

Interprocess Communication 2
Message Passing
Indirect Message Passing
4])
. operating system .
sender - receiver
send . ‘ receive
- J
4])
operating system
sender receiver
send . receive
- J
Direct Message Passing
If message passing is indirect, the message passing systsin m
have some capacity to buffer (store) messages.
CS350 Operating Systems Winter 2009

Interprocess Communication

Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:
e simplex (one-way)
e duplex (two-way)

e half-duplex (two-way, but only one way at a time)

Message Boundaries:
datagram model: message boundaries

stream model: no boundaries

CS350 Operating Systems

Winter 2009

Interprocess Communication 4

Properties of Message Passing Mechanisms (cont’d)

Connections: need to connect before communicating?

e N connection-oriented models, recipient is specifiedmaétof connection,
not by individual send operations. All messages sent ovenae&ction
have the same recipient.

e In connectionless models, recipient is specified as a pdeditoeeach send
operation.
Reliability:
e can messages get lost?
e can messages get reordered?

e can messages get damaged?

CS350 Operating Systems Winter 2009

Interprocess Communication 5

Sockets

e a socket is a communicatiamd-point
e If two processes are to communicate, each process must¢ a®atvn socket

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex
communication under the stream model (no message bousaparie

datagram sockets: support connectionless, best-effort (unreliable), duple
communication under the datagram model (message bousparie
e both types of sockets also support a variety of address asnaig.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols

CS350 Operating Systems Winter 2009

Interprocess Communication 6

Using Datagram Sockets (Receiver)

s = socket (addressType, SOCK DGRAM ;
bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

cl ose(s);

e socket creates a socket
e Dbi nd assigns an address to the socket

e recvfromreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

e bothbuf andsour ceAddr ess are filled by the ecvf r omcall

CS350 Operating Systems Winter 2009

Interprocess Communication 7

Using Datagram Sockets (Sender)

s = socket (addressType, SOCK DGRAM ;
sendt o(s, buf, nsgLengt h, t ar get Addr ess)

cl ose(s);

e Socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent
— nmsgLengt h indicates the length of the message in the buffer

— t ar get Addr ess is the address of the socket to which the message is to
be delivered

CS350 Operating Systems Winter 2009

Interprocess Communication 8

More on Datagram Sockets

e sendt o andr ecvf r omcallsmay block

— recvf romblocks if there are no messages to be received from the
specified socket

— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliabl
— messages (datagrams) may be lost
— messages may be reordered

e The sending process must know the address of the receivegsessocket.
How does it know this?

CS350 Operating Systems Winter 2009

Interprocess Communication 9

A Socket Address Convention

Service Por t Descri ption

echo 7/ udp

syst at 11/ tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renpte Logi n Protocol
t el net 23/ tcp

sntp 25/t cp

time 37/ udp

gopher 70/tcp # | nternet Gopher

finger 79/tcp

VW 80/tcp # Wor| dW deWeb HTTP

pop2 109/ tcp # POP version 2

| map2 143/ tcp # | MAP

CS350 Operating Systems Winter 2009

Interprocess Communication 10

Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM ;
bi nd(s, addr ess) ;

| i sten(s, backl og);

ns = accept (s, sourceAddress);
recv(ns, buf, buf Lengt h) ;

send(ns, buf, buf Lengt h) ;

cl ose(ns); // close accepted connection
close(s); // don’t accept nore connections

e | I st en specifies the number of connection requests for this sobkétill
be queued by the kernel

e accept accepts a connection request and creates a hew sosket (
e I ecVv receives up tdouf Lengt h bytes of data from the connection

e send sendduf Lengt h bytes of data over the connection.

CS350 Operating Systems Winter 2009

Interprocess Communication 11

Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of
the socket that has made the connection request

e additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)

CS350 Operating Systems Winter 2009

Interprocess Communication 12

Using Stream Sockets (Active Process)

s = socket (addressType, SOCK STREAM ;
connect (s, t ar get Addr ess) ;

send(s, buf, buf Lengt h) ;
recv(s, buf, buf Lengt h) ;

cl ose(s);

e connect sends a connection request to the socket with the specifodressl

— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the $sgukengbi nd)
before connecting. This is the address that will be retubyetheaccept
call in the passive process

e if the active process does not choose an address, the systarthowse one

CS350 Operating Systems Winter 2009

Interprocess Communication 13
[llustration of Stream Socket Connections
queue of connection request
s L [ED S
s2
socket

process 1 process 2

(active) (passive)

process 3

(active)
CS350 Operating Systems Winter 2009

Interprocess Communication

14

Socket Example: Client

#1 ncl ude "defs. h"

#defi ne USAGE "client serverhost port#\ n"
#defi ne ERROR STR LEN (80)

| nt
mai n(int argc, char *argv[])
{
struct hostent =*hostp;
| nt socketfd, server port, num

char error_str[ERROR STR LEN];
char read buf[BUF LEN];

char *host nane;

struct sockaddr in server_ addr;
struct in_addr tnp_ addr;

I f (argc '= 3) {
fprintf(stderr, "98", USAGE);
exit(-1);

}

CS350 Operating Systems

Winter 2009

Interprocess Communication 15

Socket Example: Client (continued)

/[get hostnane and port for the server =/
host nane = argv|[1];
server _port = atoi(argv|?2]);

[+ get the server hosts address =x/
| f ((hostp = (struct hostent =)
get host bynanme(host nane)) ==
(struct hostent =*) NULL) {
sprintf(error_str,
"client: gethostbynane fails for host %",
host nane) ;
[* get host bynane sets h _errno x/
herror(error _str);
exit(-1);
}

[+ create a socket to connect to server =/

| f ((socketfd = socket (DOVAIN, SOCK STREAM 0)) < 0) {
perror("client: can’t create socket ");
exit(1l);

}

CS350 Operating Systems Winter 2009

Interprocess Communication 16

Socket Example: Client (continued)

/| zero the socket address structure =/
menset ((char =*) &server addr, 0, sizeof(server _addr));

[+ start constructing the server socket addr =*/
mencpy(& np_addr, hostp->h_addr |i1st[0],
host p- >h_I| engt h) ;

printf("Using server |P addr = %\n",
| net _ntoa(tnp_addr));

/| set servers address field, port nunber and famly =*/
mencpy((char =*) &server addr.sin_addr,
(char =) &tnp_addr,
(unsigned int) hostp->h_|ength);
server _addr.sin_port = htons(server _port);
server _addr.sin_famly = DOVAIN;

CS350 Operating Systems Winter 2009

Interprocess Communication 17

Socket Example: Client (continued)

/[connect to the server =/

| f (connect (socketfd, (struct sockaddr =*) &server addr,
Ssi zeof (server _addr)) < 0) {
perror("client: can’t connect socket ");
exit(1l);

}

[+ send fromthe client to the server =/
num = wite(socketfd, CLIENT STR, CLIENT BYTES),;
I f (num< 0) {
perror("client: wite to socket failed\n");
exit(1l);
}
assert (num == CLI ENT_BYTES) ;

CS350 Operating Systems Winter 2009

Interprocess Communication 18

Socket Example: Client (continued)

/| receive data sent back by the server =/
total read = O;
while (total read < SERVER BYTES) {
num = read(socketfd, & ead buf[total read],
SERVER BYTES - total read);
1f (num < 0) {
perror("client: read from socket failed\n");
exit(l);
}

total read += num

}

printf("sent %\n", CLIENT_STR);
printf("received %\n", read_buf);

cl ose(socketfd);
exit(0);
}oIx main */

CS350 Operating Systems Winter 2009

Interprocess Communication

19

Socket Example: Server

#1 ncl ude "defs. h"

| nt
mai n()

{

I nt serverfd, clientfd;

struct sockaddr in server_ addr, client_addr;
I nt size, num

char read buf[BUF LEN];

struct sockaddr i n bound addr;

serverfd = socket (DOVAIN, SOCK STREAM 0);

I f (serverfd < 0) {
perror("“server: unable to create socket ");

exit(1l);
}

CS350 Operating Systems

Winter 2009

Interprocess Communication 20

Socket Example: Server (continued)

[+ zero the server _addr structure =*/
menset ((char *) &server addr, 0, sizeof (server _addr));

[+ set up addresses server wl| accept connections on x/
server _addr.sin_addr.s addr = htonl (| NADDR_ANY) ;

server _addr.sin_port = htons(PORT),;

server _addr.sin_famly = DOVAIN;

/[assign address to the socket =/

I f (bind (serverfd, (struct sockaddr =*) &server addr,
Si zeof (server _addr)) < 0) {
perror("server: unable to bind socket ");
exit(l);

}

/[WIling to accept connections on this socket. =*/
[* Maxi mum backl og of 5 clients can be queued =*/
|1 sten(serverfd, 5);

CS350 Operating Systems Winter 2009

Interprocess Communication 21

Socket Example: Server (continued)

for (;;) {
[+ walt for and return next conpleted connection */
Size = sizeof(client_addr);
1 f ((clientfd = accept(serverfd,
(struct sockaddr *) &client _addr, &size)) < 0) {
perror("server: accept failed ");
exit(l);
}

[+ get the data sent by the client =/
total read = O;
while (total _read < CLI ENT_BYTES) {
num = read(clientfd, & ead buf[total read],
CLI ENT_BYTES - total read);
1 f (num< 0) {
perror("server: read fromclient socket failed ");
exit(l),;
}

total read += num

}

CS350 Operating Systems Winter 2009

Interprocess Communication 22

Socket Example: Server (continued)

/[process the client info / request here =/
printf("client sent %\ n", read_buf);
printf("server sending %\n", SERVER STR);

/* send the data back to the client =/

num = wite(clientfd, SERVER STR, SERVER BYTES),

1f (num < 0) {
perror("server: wite to client socket failed ");
exit(l);

}

assert (num == SERVER BYTES);

close(clientfd);
} [+ for */
exit(0);
} I+ main x/

CS350 Operating Systems Winter 2009

Interprocess Communication 23

Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-orientec:hable
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits tin to
communication betweerglated processes, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors,aor@ath
end of the pipe
— for a simplex pipe, one descriptor is for reading, the otedor writing

— for a duplex pipe, both descriptors can be used for readidgnaiting

CS350 Operating Systems Winter 2009

Interprocess Communication 24

One-way Child/Parent Communication Using a Simplex Pipe

I nt fd[2];

char nf] = "message for parent";

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

1f (pid == 0) {
/1l child executes this
close(fd[0]); // close read end of pipe
wite(fd[1l],m19);

} else {
/] parent executes this

close(fd[1]); // close wite end of pipe
read(fd[O], vy, 100);

CS350 Operating Systems Winter 2009

Interprocess Communication 25

lllustration of Example (after pi pe())

parent process

CS350 Operating Systems Winter 2009

Interprocess Communication 26

lllustration of Example (after f or k())

parent process child proce:

CS350 Operating Systems Winter 2009

Interprocess Communication 27

lllustration of Example (after cl ose())

parent process child proce:

CS350 Operating Systems Winter 2009

Interprocess Communication 28

Examples of Other Interprocess Communication Mechanisms

named pipe:
e sSimilar to pipes, but with an associated name (usually a filaa)

e name allows arbitrary processes to communicate by opehangame
named pipe

e must be explicitly deleted, unlike an unnamed pipe
message queue:

e like a named pipe, except that there are message boundaries

e nBgsend call sends a message into the quatsyr ecv call receives the
next message from the queue

CS350 Operating Systems Winter 2009

Interprocess Communication 29

Signals

e signals permit asynchronous one-way communication
— from a process to another process, or to a group of procegadbe kernel

— from the kernel to a process, or to a group of processes
e there are many types of signals

e the arrival of a signal may cause the execution afgaal handler in the
receiving process

e there may be a different handler for each type of signal

CS350 Operating Systems Winter 2009

Interprocess Communication 30

Examples of Signal Types

Si gnal Val ue Acti on Conmment
SI G NT 2 Term | nterrupt from keyboard
SIALL 4 Cor e |11 egal Instruction
SI &KI LL 9 Term Kill signal
SIGCHLD 20,17, 18 | gn Chil d stopped or term nated
Sl GBUS 10, 7, 10 Cor e Bus error

SI GXCPU 24, 24, 30 Core CPUtine limt exceeded
SI GSTOP 17,19, 23 St op St op process

CS350 Operating Systems Winter 2009

Interprocess Communication 31

Signal Handling

e oOperating system determines default signal handling foln @@w process

e example default actions:
— Ignore (do nothing)
— kill (terminate the process)

— stop (block the process)
e arunning process can change the default for some typesradlsig

e signal-related system calls
— calls to set non-default signal handlers, e.g., Ugiignal , si gacti on

— calls to send signals, e.qg., Urkx | |

CS350 Operating Systems Winter 2009

Interprocess Communication 32

Implementing IPC

e application processes use descriptors (identifiers) gealvby the kernel to
refer to specific sockets and pipes, as well as files and othects

e kerneldescriptor tables (or other similar mechanism) are used to associate
descriptors with kernel data structures that implementdBfects

e kernel provides bounded buffer space for data that has mgmsing an IPC
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a perembjbasis

— IPC end points, like sockets, buffering is associated waitheendpoint

system call RN buffer & system call
interface interface

operating system

CS350 Operating Systems Winter 2009

Interprocess Communication 33

Network Interprocess Communication

e some sockets can be used to connect processes that aregranrdifferent

machine

e the kernel:
— controls access to network interfaces

— multiplexes socket connections across the network

G G
|
7 R

I
\ : /
/ \ 1 /
/4 R ¥ 4 operating

network interface system

s

operating\ \
system

network interface

/\netmfrkj\

CS350 Operating Systems Winter 2009

Interprocess Communication 34

Networking Reference Models

e ISO/OSI Reference

Model
7 | Application Layer | ™ "*eere
6 | Presentation Layef L
5 Session Layer 'ayer“seme: ‘:
4 | Transport Layer Layern === Ly
3 | Network Layer T T
2 | Data Link Layer | |
1 Physical Layer i aer 1 protocol l

Layer1l =< > Layer 1

e Internet Model
— layers 1-4 and 7

CS350 Operating Systems Winter 2009

Interprocess Communication 35

Internet Protocol (IP): Layer 3

e every machine has one (or more) IP address, in addition tateslink layer
address(es)

e In IPv4, addresses are 32 bits, and are commonly writtergudiot” notation,
e.g.:
— cpu06.student.cs 129.97.152.106
— www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

e |P moves packets (datagrams) from one machine to anothdmnmeac

e principal function of IP igouting: determining the network path that a packet
should take to reach its destination

e |P packet delivery is “best effort” (unreliable)

CS350 Operating Systems Winter 2009

Interprocess Communication 36

IP Routing Table Example

e Routing table for zonker.uwaterloo.ca, which is on thresvoeks, and has IP
addresses 129.97.74.66, 172.16.162.1, and 192.168 .(btt& per network):

Destination Gateway | Interface

172.16.162.* - vmnetl
129.97.74.* - ethO
192.168.148.* - vmnet8

default 129.97.74.1| ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is ditigc
reachable)

Interface: which network interface to use to send this packet

CS350 Operating Systems Winter 2009

Interprocess Communication

37

Internet Transport Protocols

TCP: transport control protocol

connection-oriented
reliable

stream

congestion control

used to implement INET domain stream sockets

UDP: user datagram protocol

connectionless
unreliable

datagram

no congestion control

used to implement INET domain datagram sockets

CS350

Operating Systems

Winter 2009

Interprocess Communication 38

TCP and UDP Ports

e since there can be many TCP or UDP communications end pesmt&e€ts) on
a single machine, there must be a way to distinguish amomg the

e each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

e The machine name is the IP address of a machine, and the pobemniserves
to distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (tilegpem
whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Winter 2009

Interprocess Communication 39

Example of Network Layers

Application Application
Process Process
A A
Transport Transport
- - = = - — — e — o — - - > o
Instance Instance
Network - Network Network - Network
Instance Instance Instance Instance
Data Link Data Link Data Link Data Link
| | -

Instance Instance Instance Instance

|/
T\ gateways J

CS350 Operating Systems Winter 2009

Interprocess Communication 40
Network Packets (UDP Example)
application message
UDP payload
UDP headen application message
- IP payload -
IP Header | UDP header] application message
Data Link Payload
Data Link Header | IP Header | UDP headerl application message
CS350 Operating Systems Winter 2009

41

Interprocess Communication

BSD Unix Networking Layers

[process }

A

system calls

Y

socket layer

socket queues

_/

(IP) protocol queue

interface
queues

interface layer
(ethernet,PPP,loopback,...)

A

A A

Y

network
device

Y Y

network network
device device

Winter 2009

CS350 Operating Systems

