
Processes and the Kernel 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

• anaddress space, which represents the memory that holds the program’s

code and data

• a thread of execution (possibly several threads)

• other resources associated with the running program. For example:

– open files

– sockets

– attributes, such as a name (process identifier)

– . . .

A process with one thread is asequential process. A process with

more than one thread is aconcurrent process.

CS350 Operating Systems Winter 2009

Processes and the Kernel 2

Multiprogramming

• multiprogramming means having multiple processes existing at the same time

• most modern, general purpose operating systems support multiprogramming

• all processes share the available hardware resources, withthe sharing

coordinated by the operating system:

– Each process uses some of the available memory to hold its address space.

The OS decides which memory and how much memory each process gets

– OS can coordinate shared access to devices (keyboards, disks), since

processes use these devices indirectly, by making system calls.

– Processestimeshare the processor(s). Again, timesharing is controlled by

the operating system.

• OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.

CS350 Operating Systems Winter 2009

Processes and the Kernel 3

The OS Kernel

• The kernel is a program. It has code and data like any other program.

• Usually kernel code runs in a privileged execution mode, while other

programs do not

• For now, think of the kernel as a program that resides in its own address space,

separate from the address spaces of processes that are running on the system.

Later, we will elaborate on the relationship between the kernel’s address space

and process address spaces.

CS350 Operating Systems Winter 2009

Processes and the Kernel 4

An Application and the Kernel

CPU registers

memory codedata code datastack

thread library

kernelapplication

CS350 Operating Systems Winter 2009

Processes and the Kernel 5

Kernel Privilege, Kernel Protection

• What does it mean to run in privileged mode?

• Kernel uses privilege to

– control hardware

– protect and isolate itself from processes

• privileges vary from platform to platform, but may include:

– ability to execute special instructions (likehalt)

– ability to manipulate processor state (like execution mode)

– ability to access memory addresses that can’t be accessed otherwise

• kernel ensures that it isisolated from processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled

mechanisms like system calls.

CS350 Operating Systems Winter 2009

Processes and the Kernel 6

System Calls

• System calls are an interface between processes and the kernel.

• A process uses system calls to request operating system services.

• From point of view of the process, these services are used to manipulate the

abstractions that are part of its execution environment. For example, a process

might use a system call to

– open a file

– send a message over a pipe

– create another process

– increase the size of its address space

CS350 Operating Systems Winter 2009

Processes and the Kernel 7

How System Calls Work

• The hardware provides a mechanism that a running program canuse to cause

a system call. Often, it is a special instruction, e.g., the MIPSsyscall

instruction.

• What happens on a system call:

– the processor is switched to system (privileged) executionmode

– key parts of the current thread context, such as the program counter, are

saved

– the program counter is set to a fixed (determined by the hardware) memory

address, which is within the kernel’s address space

CS350 Operating Systems Winter 2009

Processes and the Kernel 8

System Call Execution and Return

• Once a system call occurs, the calling thread will be executing a system call
handler, which is part of the kernel, in system mode.

• The kernel’s handler determines which service the calling process wanted, and
performs that service.

• When the kernel is finished, it returns from the system call. This means:

– restore the key parts of the thread context that were saved when the system
call was made

– switch the processor back to unprivileged (user) executionmode

• Now the thread is executing the calling process’ program again, picking up
where it left off when it made the system call.

A system call causes a thread to stop executing application code

and to start executing kernel code in privileged mode. The system

call return switches the thread back to executing application code

in unprivileged mode.

CS350 Operating Systems Winter 2009

Processes and the Kernel 9

System Call Diagram

Process Kernel

time

system call return

system call

thread
execution
path

CS350 Operating Systems Winter 2009

Processes and the Kernel 10

OS/161close System Call Description

Library: standard C library (libc)

Synopsis:

#include <unistd.h>

int

close(int fd);

Description: The file handlefd is closed.. . .

Return Values: On success,close returns 0. On error, -1 is returned and

errno is set according to the error encountered.

Errors:

EBADF: fd is not a valid file handle

EIO: A hard I/O error occurred

CS350 Operating Systems Winter 2009

Processes and the Kernel 11

A Tiny OS/161 Application that Usesclose: SyscallExample

/* Program: SyscallExample */

#include <unistd.h>

#include <errno.h>

int

main()

{

int x;

x = close(999);

if (x < 0) {

return errno;

}

return x;

}

CS350 Operating Systems Winter 2009

Processes and the Kernel 12

SyscallExample, Disassembled

00400100 <main>:
400100: 27bdffe8 addiu sp,sp,-24
400104: afbf0010 sw ra,16(sp)
400108: 0c100077 jal 4001dc <close>
40010c: 240403e7 li a0,999
400110: 04400005 bltz v0,400128 <main+0x28>
400114: 00401821 move v1,v0
400118: 8fbf0010 lw ra,16(sp)
40011c: 00601021 move v0,v1
400120: 03e00008 jr ra
400124: 27bd0018 addiu sp,sp,24
400128: 3c031000 lui v1,0x1000
40012c: 8c630000 lw v1,0(v1)
400130: 08100046 j 400118 <main+0x18>
400134: 00000000 nop

The above can be obtained by disassembling the compiled

SyscallExample executable file usingcs350-objdump -d

CS350 Operating Systems Winter 2009

Processes and the Kernel 13

System Call Wrapper Functions from the Standard Library

...

004001d4 <write>:

4001d4: 08100060 j 400180 <__syscall>

4001d8: 24020006 li v0,6

004001dc <close>:

4001dc: 08100060 j 400180 <__syscall>

4001e0: 24020007 li v0,7

004001e4 <reboot>:

4001e4: 08100060 j 400180 <__syscall>

4001e8: 24020008 li v0,8

...

The above is disassembled code from the standard C li-

brary (libc), which is linked withSyscallExample. See

lib/libc/syscalls.S for more information about how the

standard C library is implemented.

CS350 Operating Systems Winter 2009

Processes and the Kernel 14

OS/161 MIPS System Call Conventions

• When thesyscall instruction occurs:

– An integer system call code should be located in register R2 (v0)

– Any system call arguments should be located in registers R4 (a0), R5 (a1),

R6 (a2), and R7 (a3), much like procedure call arguments.

• When the system call returns

– register R7 (a3) will contain a 0 if the system call succeeded, or a 1 if the

system call failed

– register R2 (v0) will contain the system call return value ifthe system call

succeeded, or an error number (errno) if the system call failed.

CS350 Operating Systems Winter 2009

Processes and the Kernel 15

OS/161 System Call Code Definitions

...

#define SYS_read 5

#define SYS_write 6

#define SYS_close 7

#define SYS_reboot 8

#define SYS_sync 9

#define SYS_sbrk 10

...

This comes fromkern/include/kern/callno.h. The files

in kern/include/kern define things (like system call codes)

that must be known by both the kernel and applications.

CS350 Operating Systems Winter 2009

Processes and the Kernel 16

The OS/161 System Call and Return Processing

00400180 <__syscall>:

400180: 0000000c syscall

400184: 10e00005 beqz a3,40019c <__syscall+0x1c>

400188: 00000000 nop

40018c: 3c011000 lui at,0x1000

400190: ac220000 sw v0,0(at)

400194: 2403ffff li v1,-1

400198: 2402ffff li v0,-1

40019c: 03e00008 jr ra

4001a0: 00000000 nop

The system call and return processing, from the standard C library.

Like the rest of the library, this is unprivileged, user-level code.

CS350 Operating Systems Winter 2009

Processes and the Kernel 17

OS/161 MIPS Exception Handler

exception:
move k1, sp /* Save previous stack pointer in k1 */
mfc0 k0, c0_status /* Get status register */
andi k0, k0, CST_KUp /* Check the we-were-in-user-mode bit */
beq k0, $0, 1f /* If clear,from kernel,already have stack *
nop /* delay slot */
/* Coming from user mode - load kernel stack into sp */
la k0, curkstack /* get address of "curkstack" */
lw sp, 0(k0) /* get its value */
nop /* delay slot for the load */

1:
mfc0 k0, c0_cause /* Now, load the exception cause. */
j common_exception /* Skip to common code */
nop /* delay slot */

When thesyscall instruction occurs, the MIPS transfers control to

address0x80000080. This kernel exception handler lives there. See

kern/arch/mips/mips/exception.S

CS350 Operating Systems Winter 2009

Processes and the Kernel 18

OS/161 User and Kernel Thread Stacks

CPU registers

memory codedata code datastack stack

thread library

application kernel

Each OS/161 thread has two stacks, one that is used while the

thread is executing unprivileged application code, and another that

is used while the thread is executing privileged kernel code.

CS350 Operating Systems Winter 2009

Processes and the Kernel 19

OS/161 MIPS Exception Handler (cont’d)

Thecommon exception code does the following:

1. allocates atrap frame on the thread’s kernel stack and saves the user-level

application’s complete processor state (all registers except k0 and k1) into the

trap frame.

2. calls themips trap function to continue processing the exception.

3. whenmips trap returns, restore the application processor state from the

trap from to the registers

4. issue MIPSjr andrfe (restore from exception) instructions to return control

to the application code. Thejr instruction takes control back to location

specified by the application program counter when thesyscall occurred,

and therfe (which happens in the delay slot of thejr) restores the processor

to unprivileged mode

CS350 Operating Systems Winter 2009

Processes and the Kernel 20

OS/161 Trap Frame

CPU registers

memory codedata code datastack stack

thread library

trap frame with saved
application state

application kernel

While the kernel handles the system call, the application’sCPU

state is saved in a trap frame on the thread’s kernel stack, and the

CPU registers are available to hold kernel execution state.

CS350 Operating Systems Winter 2009

Processes and the Kernel 21

mips trap: Handling System Calls, Exceptions, and Interrupts

• On the MIPS, the same exception handler is invoked to handle system calls,

exceptions and interrupts

• The hardware sets a code to indicate the reason (system call,exception, or

interrupt) that the exception handler has been invoked

• OS/161 has a handler function corresponding to each of thesereasons. The

mips trap function tests the reason code and calls the appropriate function:

the system call handler (mips syscall) in the case of a system call.

• mips trap can be found inkern/arch/mips/mips/trap.c.

Interrupts and exceptions will be presented shortly

CS350 Operating Systems Winter 2009

Processes and the Kernel 22

OS/161 MIPS System Call Handler

mips_syscall(struct trapframe *tf) {
assert(curspl==0);
callno = tf->tf_v0; retval = 0;
switch (callno) {
case SYS_reboot:

err = sys_reboot(tf->tf_a0); /* in kern/main/main.c */
break;

/* Add stuff here */

default:
kprintf("Unknown syscall %d\n", callno);
err = ENOSYS;
break;

}

mips syscall checks the system call code and in-

vokes a handler for the indicated system call. See

kern/arch/mips/mips/syscall.c

CS350 Operating Systems Winter 2009

Processes and the Kernel 23

OS/161 MIPS System Call Return Handling

if (err) {
tf->tf_v0 = err;
tf->tf_a3 = 1; /* signal an error */

} else {
/* Success. */
tf->tf_v0 = retval;
tf->tf_a3 = 0; /* signal no error */

}

/* Advance the PC, to avoid the syscall again. */
tf->tf_epc += 4;

/* Make sure the syscall code didn’t forget to lower spl *
assert(curspl==0);

}

mips syscall must ensure that the kernel adheres to the system

call return convention.

CS350 Operating Systems Winter 2009

Processes and the Kernel 24

Exceptions

• Exceptions are another way that control is transferred froma process to the

kernel.

• Exceptions are conditions that occur during the execution of an instruction by

a process. For example, arithmetic overflows, illegal instructions, or page

faults (to be discussed later).

• exceptions are detected by the hardware

• when an exception is detected, the hardware transfers control to a specific

address

• normally, a kernel exception handler is located at that address

Exception handling is similar to, but not identical to, system call

handling. (What is different?)

CS350 Operating Systems Winter 2009

Processes and the Kernel 25

MIPS Exceptions

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

In OS/161,mips trap uses these codes to decide whether it has

been invoked because of an interrupt, a system call, or an excep-

tion.

CS350 Operating Systems Winter 2009

Processes and the Kernel 26

Interrupts

• Interrupts are a third mechanism by which control may be transferred to the

kernel

• Interrupts are similar to exceptions. However, they are caused by hardware

devices, not by the execution of a program. For example:

– a network interface may generate an interrupt when a networkpacket

arrives

– a disk controller may generate an interrupt to indicate thatit has finished

writing data to the disk

– a timer may generate an interrupt to indicate that time has passed

• Interrupt handling is similar to exception handling - current execution context

is saved, and control is transferred to a kernel interrupt handler at a fixed

address.

CS350 Operating Systems Winter 2009

Processes and the Kernel 27

Interrupts, Exceptions, and System Calls: Summary

• interrupts, exceptions and system calls are three mechanisms by which control

is transferred from an application program to the kernel

• when these events occur, the hardware switches the CPU into privileged mode

and transfers control to a predefined location, at which a kernel handler

should be located

• the handler saves the application thread context so that thekernel code can be

executed on the CPU, and restores the application thread context just before

control is returned to the application

CS350 Operating Systems Winter 2009

Processes and the Kernel 28

Implementation of Processes

• The kernel maintains information about all of the processesin the system in a

data structure often called the process table.

• Information about individual processes is stored in a structure that is

sometimes called aprocess control block (PCB). In practice, however,

information about a process may not all be located in a singledata structure.

• Per-process information may include:

– process identifier and owner

– current process state and other scheduling information

– lists of resources allocated to the process, such as open files

– accounting information

In OS/161, some process information (e.g., an address space

pointer) is kept in thethread structure. This works only because

each OS/161 process has a single thread.

CS350 Operating Systems Winter 2009

Processes and the Kernel 29

Implementing Timesharing

• whenever a system call, exception, or interrupt occurs, control is transferred

from the running program to the kernel

• at these points, the kernel has the ability to cause a contextswitch from the

running process’ thread to another process’ thread

• notice that these context switches always occur while a process’ thread is

executing kernel code

By switching from one process’s thread to another process’s

thread, the kernel timeshares the processor among multiplepro-

cesses.

CS350 Operating Systems Winter 2009

Processes and the Kernel 30

Two Processes in OS/161

CPU registers

data code codedatadata codestack stack stackstack

thread librarytrap frame for app #1

saved kernel thread
context for thread #1

application #1 kernel application #2

CS350 Operating Systems Winter 2009

Processes and the Kernel 31

Timesharing Example (Part 1)

KernelProcess A Process B

context switch

A’s thread is
ready, not running

system call
or exception
or interrupt

Kernel switches execution context to Process B.

return

B’s thread is
ready, not running

CS350 Operating Systems Winter 2009

Processes and the Kernel 32

Timesharing Example (Part 2)

KernelProcess A Process B

Kernel switches execution context back to process A.

B’s thread is
ready, not running

context switch
system call
or exception
or interrupt

return

CS350 Operating Systems Winter 2009

Processes and the Kernel 33

Implementing Preemption

• the kernel uses interrupts from the system timer to measure the passage of

time and to determine whether the running process’s quantumhas expired.

• a timer interrupt (like any other interrupt) transfers control from the running

program to the kernel.

• this gives the kernel the opportunity to preempt the runningthread and

dispatch a new one.

CS350 Operating Systems Winter 2009

Processes and the Kernel 34

Preemptive Multiprogramming Example

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

Key:

CS350 Operating Systems Winter 2009

Processes and the Kernel 35

System Calls for Process Management

Linux OS/161

Creation fork,execve fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,. . . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,. . . getpid

CS350 Operating Systems Winter 2009

Processes and the Kernel 36

The Process Model

• Although the general operations supported by the process interface are

straightforward, there are some less obvious aspects of process behaviour that

must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?

What is in the address space? What is the initial thread context? Does it

have any other resources?

Multithreading: Are concurrent processes supported, or is each process

limited to a single thread?

Inter-Process Relationships:Are there relationships among processes, e.g,

parent/child? If so, what do these relationships mean?

CS350 Operating Systems Winter 2009

Processes and the Kernel 37

Process Creation Example (Part 1)

KernelProcess A

(CreateProcess)
system call

Parent process (Process A) requests creation of a new process.

CS350 Operating Systems Winter 2009

Processes and the Kernel 38

Process Creation Example (Part 2)

KernelProcess A

(CreateProcess)
system call

Process B

B’s thread is
ready, not runningsystem call return

Kernel creates new process (Process B)

CS350 Operating Systems Winter 2009

