
Processor Scheduling 1

The Nature of Program Executions

• A running thread can be modeled as alternating series ofCPU bursts andI/O

bursts

– during a CPU burst, a thread is executing instructions

– during an I/O burst, a thread is waiting for an I/O operation to be

performed and is not executing instructions

CS350 Operating Systems Winter 2009

Processor Scheduling 2

Preemptive vs. Non-Preemptive

• A non-preemptive scheduler runs only when the running thread gives up the

processor through its own actions, e.g.,

– the thread terminates

– the thread blocks because of an I/O or synchronization operation

– the thread performs a Yield system call (if one is provided bythe operating

system)

• A preemptive scheduler may, in addition, force a running thread to stop

running

– typically, a preemptive scheduler will be invoked periodically by a timer

interrupt handler, as well as in the circumstances listed above

– a running thread that is preempted is moved to the ready state

CS350 Operating Systems Winter 2009



Processor Scheduling 3

FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):

• non-preemptive - each thread runs until it blocks or terminates

• FIFO ready queue

Round-Robin:

• preemptive version of FCFS

• running thread is preempted after a fixed time quantum, if it has not

already blocked

• preempted thread goes to the end of the FIFO ready queue

CS350 Operating Systems Winter 2009

Processor Scheduling 4

Shortest Job First (SJF) Scheduling

• non-preemptive

• ready threads are scheduled according to the length of theirnext CPU burst -

thread with the shortest burst goes first

• SJF minimizes average waiting time, but can lead to starvation

• SJF requires knowledge of CPU burst lengths

– Simplest approach is to estimate next burst length of each thread based on

previous burst length(s). For example, exponential average considers all

previous burst lengths, but weights recent ones most heavily:

Bi+1 = αbi + (1 − α)Bi

whereBi is the predicted length of theith CPU burst, andbi is its actual

length, and0 ≤ α ≤ 1.

• Shortest Remaining Time First is a preemptive variant of SJF. Preemption

may occur when a new thread enters the ready queue.

CS350 Operating Systems Winter 2009



Processor Scheduling 5

FCFS Gantt Chart Example

Pc = 3Pb = 8Pa = 5Initial ready queue:
Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20

CS350 Operating Systems Winter 2009

Processor Scheduling 6

Round Robin Example

Pc = 3Pb = 8Pa = 5Initial ready queue:
Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20

Quantum = 2

CS350 Operating Systems Winter 2009



Processor Scheduling 7

SJF Example

Pc = 3Pb = 8Pa = 5Initial ready queue:
Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20

CS350 Operating Systems Winter 2009

Processor Scheduling 8

SRTF Example

Pc = 3Pb = 8Pa = 5Initial ready queue:
Thread Pd (=2) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20

CS350 Operating Systems Winter 2009



Processor Scheduling 9

Highest Response Ratio Next

• non-preemptive

• response ratio is defined for each ready thread as:

w + b

b

whereb is the estimated CPU burst time andw is the actual waiting time

• scheduler chooses the thread with the highest response ratio (choose smallest

b in case of a tie)

• HRRN is an example of a heuristic that blends SJF and FCFS

CS350 Operating Systems Winter 2009

Processor Scheduling 10

HRRN Example

Pc = 3Pb = 8Pa = 5Initial ready queue:
Thread Pd (=4) "arrives" at time 5

time

Pd

Pc

Pb

Pa

0 4 8 12 16 20

CS350 Operating Systems Winter 2009



Processor Scheduling 11

Prioritization

• a scheduler may be asked to take process or thread prioritiesinto account

• for example, priorities could be based on

– user classification

– application classification

– application specification

(e.g., Linuxsetpriority/sched setscheduler)

• scheduler can:

– always choose higher priority threads over lower priority thread

– use any scheduling heuristic to schedule threads of equal priority

• low priority threads risk starvation. If this is not desired, scheduler must have

a mechanism for elevating the priority of low priority threads that have waited

a long time

CS350 Operating Systems Winter 2009

Processor Scheduling 12

Multilevel Feedback Queues

• gives priority to interactive threads (those with short CPUbursts)

• scheduler maintains several ready queues

• scheduler never chooses a thread in queuei if there are threads in any queue

j < i.

• threads in queuei use quantumqi, andqi < qj if i < j

• newly ready threads go in to queue0

• a leveli thread that is preempted goes into the leveli + 1 ready queue

CS350 Operating Systems Winter 2009



Processor Scheduling 13

3 Level Feedback Queue State Diagram

blocked

ready(0) run(0)

ready(1)

ready(2)

run(1)

run(2)

block

block

block

preempt

preempt

preempt

dispatch

dispatch

dispatch

unblock

CS350 Operating Systems Winter 2009

Processor Scheduling 14

Other Scheduling Issues

short term scheduling: what has been covered so far

medium term scheduling: suspension/resumption of partially executed processes

• usually because a resource, especially memory, is overloaded

• suspended process releases resources

• operating system may also provide mechanisms for applications or users

to request suspension/resumption of processes

long term scheduling: process admission control to limit the degree of

multiprogramming

CS350 Operating Systems Winter 2009



Processor Scheduling 15

Scheduling States Including Suspend/Resume

ready running

blocked

suspended/
ready

suspended/
blocked

dispatch

quantum expires

suspend

resume

suspend

suspend

resume

CS350 Operating Systems Winter 2009


