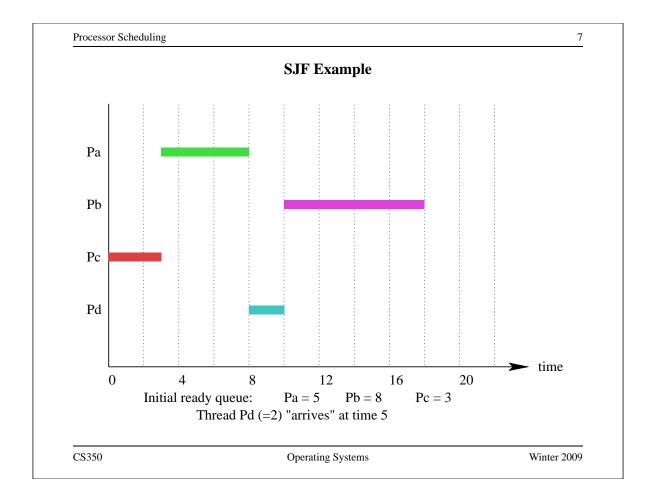
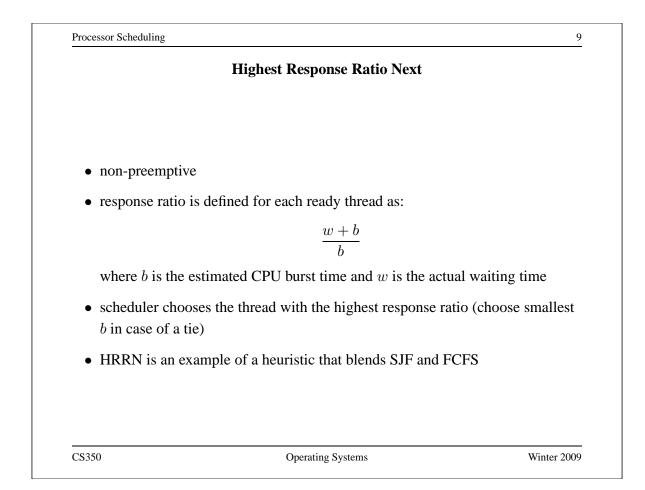
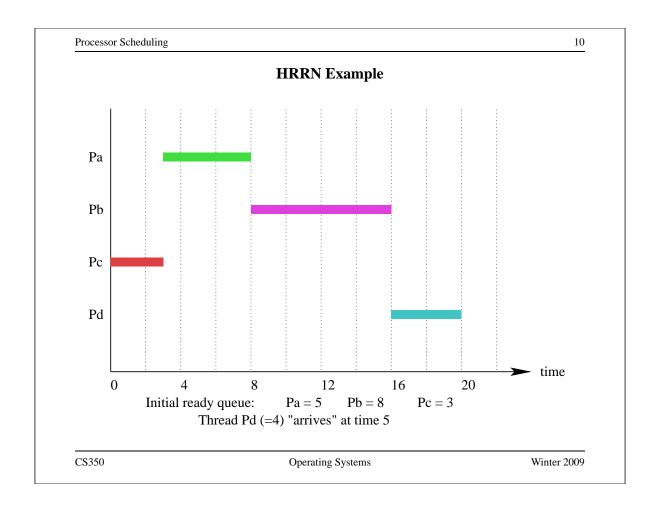
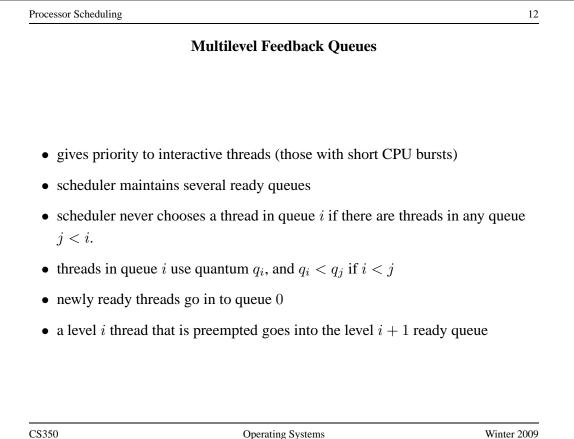

 A running thread can be modeled as alternating series of <i>CPU bursbursts</i> during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to be performed and is not executing instructions 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 	The Nature of Program Executions		
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 			
 bursts during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to burst. 	ts and I/O		
 during a CPU burst, a thread is executing instructions during an I/O burst, a thread is waiting for an I/O operation to be 	is and I/O		
– during an I/O burst, a thread is waiting for an I/O operation to b			
performed and is not executing instructions	e		

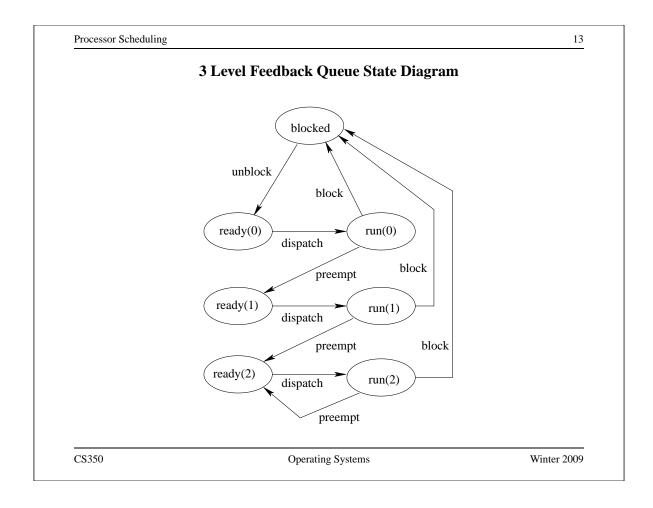

	Preemptive vs. Non-Preemptive	
	<i>ve</i> scheduler runs only when the running gh its own actions, e.g.,	thread gives up the
- the thread ter	-	
	ocks because of an I/O or synchronization	on operation
 the thread pe system) 	orforms a Yield system call (if one is prov	vided by the operating
• A <i>preemptive</i> sch running	heduler may, in addition, force a running	g thread to stop
••••••	reemptive scheduler will be invoked per dler, as well as in the circumstances liste	• •
– a running thr	read that is preempted is moved to the read	ady state

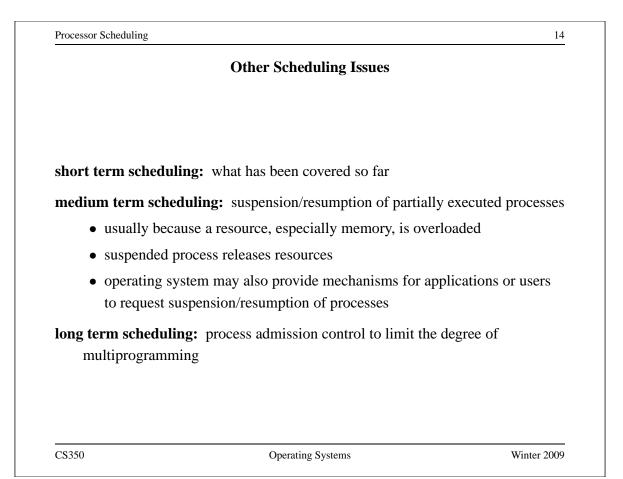
FCFS and Round-Robin Scheduling		
First-Come, First-S	Served (FCFS):	
 non-preemp 	tive - each thread runs until it blocks or t	erminates
• FIFO ready	queue	
Round-Robin:		
• preemptive	version of FCFS	
 running three already block 	ead is preempted after a fixed time quantu ked	ım, if it has not
• preempted t	hread goes to the end of the FIFO ready of	queue
CS350	Operating Systems	Winter 2009

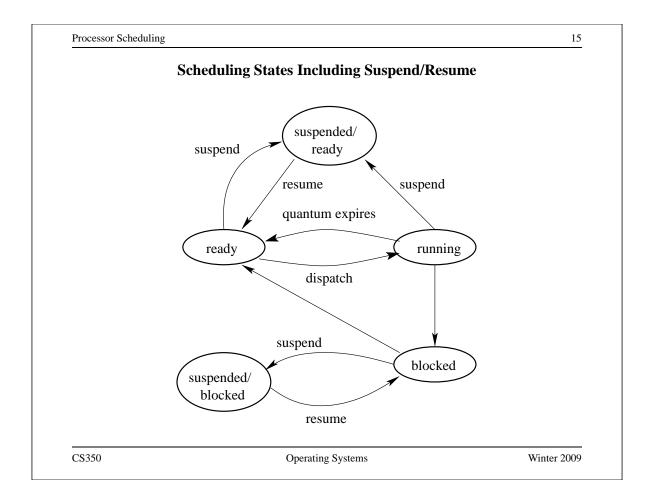

Shortest Job First (SJF) Scheduling				
• non-preen	nptive			
•	ads are scheduled according to the length of their ne h the shortest burst goes first	xt CPU burst -		
• SJF minin	nizes average waiting time, but can lead to starvation	l		
• SJF requir	res knowledge of CPU burst lengths			
previo	est approach is to estimate next burst length of each t us burst length(s). For example, exponential average us burst lengths, but weights recent ones most heavil	considers all		
	$B_{i+1} = \alpha b_i + (1 - \alpha)B_i$			
	B_i is the predicted length of the <i>i</i> th CPU burst, and and $0 \le \alpha \le 1$.	b_i is its actual		
	Remaining Time First is a preemptive variant of SJF. r when a new thread enters the ready queue.	Preemption		
S350	Operating Systems	Winter 2009		

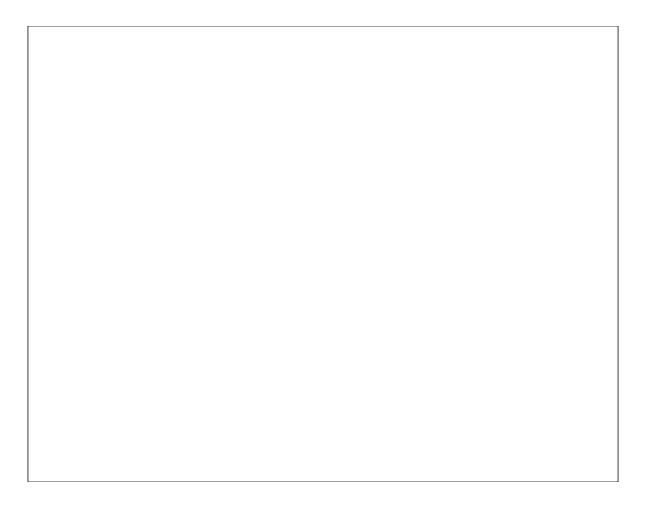



Prioritization


- a scheduler may be asked to take process or thread priorities into account
- for example, priorities could be based on
 - user classification
 - application classification
 - application specification (e.g., Linux setpriority/sched_setscheduler)
- scheduler can:
 - always choose higher priority threads over lower priority thread
 - use any scheduling heuristic to schedule threads of equal priority
- low priority threads risk starvation. If this is not desired, scheduler must have a mechanism for elevating the priority of low priority threads that have waited a long time


CS350


Operating Systems


Winter 2009

