
Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on unipro-

cessors.

CS350 Operating Systems Winter 2009

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a varietyof ways:

– Threads share access, though the operating system, to system devices

(more on this later. . .)

– Threads may share access to program data, e.g., global variables.

• A common synchronization problem is to enforcemutual exclusion, which

means making sure that only one thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed iscalled a

critical section.

CS350 Operating Systems Winter 2009

Synchronization 3

Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;
list element *element;
assert(!is empty(lp));
element = lp->first;
num = lp->first->item;
if (lp->first == lp->last) {

lp->first = lp->last = NULL;
} else {

lp->first = element->next;
}
lp->num_in_list--;
free element;
return num;

}

Thelist remove front function is a critical section. It may

not work properly if two threads call it at the same time on the

samelist. (Why?)

CS350 Operating Systems Winter 2009

Synchronization 4

Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc (list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

Thelist append function is part of the same critical section as

list remove front. It may not work properly if two threads

call it at the same time, or if a thread calls it while another has

calledlist remove front

CS350 Operating Systems Winter 2009

Synchronization 5

Enforcing Mutual Exclusion

• mutual exclusion algorithms ensure that only one thread at atime executes the

code in a critical section

• several techniques for enforcing mutual exclusion

– exploit special hardware-specific machine instructions, e.g., test-and-set or

compare-and-swap, that are intended for this purpose

– use mutual exclusion algorithms, e.g.,Peterson’s algorithm, that rely only

on atomic loads and stores

– control interrupts to ensure that threads are not preemptedwhile they are

executing a critical section

CS350 Operating Systems Winter 2009

Synchronization 6

Disabling Interrupts

• On a uniprocessor, only one thread at a time is actually running.

• If the running thread is executing a critical section, mutual exclusion may be
violated if

1. the running thread is preempted (or voluntarily yields) while it is in the
critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters
the same critical section that the preempted thread was in

• Since preemption is caused by timer interrupts, mutual exclusion can be

enforced by disabling timer interrupts before a thread enters the critical
section, and re-enabling them when the thread leaves the critical section.

This is the way that the OS/161 kernel enforces mu-

tual exclusion. There is a simple interface (splhigh(),

spl0(), splx()) for disabling and enabling interrupts. See

kern/arch/mips/include/spl.h.

CS350 Operating Systems Winter 2009

Synchronization 7

Pros and Cons of Disabling Interrupts

• advantages:

– does not require any hardware-specific synchronization instructions

– works for any number of concurrent threads

• disadvantages:

– indiscriminate: prevents all preemption, not just preemption that would

threaten the critical section

– ignoring timer interrupts has side effects, e.g., kernel unaware of passage

of time. (Worse, OS/161’ssplhigh() disablesall interrupts, not just

timer interrupts.) Keep critical sectionsshort to minimize these problems.

– will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Winter 2009

Synchronization 8

Peterson’s Mutual Exclusion Algorithm

/* shared variables */

/* note: one flag array and turn variable */

/* for each critical section */

boolean flag[2]; /* shared, initially false */

int turn; /* shared */

flag[i] = true; /* in one process, i = 0 and j = 1 */

turn = j; /* in the other, i = 1 and j = 0 */

while (flag[j] && turn == j) { } /* busy wait */

critical section /* e.g., call to list remove front */

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but works only for

two processes. (Why?)

CS350 Operating Systems Winter 2009

Synchronization 9

Mutual Exclusion Using Special Instructions

• Software solutions to the critical section problem (e.g., Peterson’s algorithm)

assume only atomic load and atomic store.

• Simpler algorithms are possible if more complexatomic operations are

supported by the hardware. For example:

Test and Set: set the value of a variable, and return the old value

Swap: swap the values of two variables

• On uniprocessors, mutual exclusion can also be achieved by disabling

interrupts during the critical section. (Normally, user programs cannot do this,

but the kernel can.)

CS350 Operating Systems Winter 2009

Synchronization 10

Hardware-Specific Synchronization Instructions

• a test-and-set instructionatomically sets the value of a specified memory

location and either

– places that memory location’sold value into a register, or

– checks a condition against the memory location’s old value and records the

result of the check in a register

• for presentation purposes, we will abstract such an instruction as a function

TestAndSet(address,value), which takes a memory location

(address) and a value as parameters. It atomically storesvalue at the

memory location specified byaddress and returns the previous value stored

at that address

CS350 Operating Systems Winter 2009

Synchronization 11

A Spin Lock Using Test-And-Set

• a test-and-set instruction can be used to enforce mutual exclusion

• for each critical section, define alock variable

boolean lock; /* shared, initially false */

We will use the lock variable to keep track of whether there isa thread in the
critical section, in which case the value oflock will be true

• before a thread can enter the critical section, it does the following:

while (TestAndSet(&lock,true)) { } /* busy-wait */

• when the thread leaves the critical section, it does

lock = false;

• this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known as aspin lock, since a thread

“spins” in the while loop until the critical section is free.Spin locks

are widely used on multiprocessors.

CS350 Operating Systems Winter 2009

Synchronization 12

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than0, decrement the value. Otherwise,

wait until the value is greater than0 and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores:can take on any non-negative value

binary semaphores: take on only the values0 and1. (V on a binary

semaphore with value1 has no effect.)

By definition, theP andV operations of a semaphore areatomic.

CS350 Operating Systems Winter 2009

Synchronization 13

OS/161 Semaphores

struct semaphore {

char *name;

volatile int count;

};

struct semaphore *sem create(const char *name,

int initial count);

void P(struct semaphore *);

void V(struct semaphore *);

void sem destroy(struct semaphore *);

see

• kern/include/synch.h

• kern/thread/synch.c

CS350 Operating Systems Winter 2009

Synchronization 14

OS/161 Semaphores: P()

void
P(struct semaphore *sem)
{

int spl;
assert(sem != NULL);

/*
* May not block in an interrupt handler.
* For robustness, always check, even if we can actually
* complete the P without blocking.
*/
assert(in interrupt==0);

spl = splhigh();
while (sem->count==0) {
thread sleep(sem);

}
assert(sem->count>0);
sem->count--;
splx(spl);

}

CS350 Operating Systems Winter 2009

Synchronization 15

Thread Blocking

• Sometimes a thread will need to wait for an event. One exampleis on the

previous slide: a thread that attempts a P() operation on a zero-valued

semaphore must wait until the semaphore’s value becomes positive.

• other examples that we will see later on:

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• In these circumstances, we do not want the thread to run, since it cannot do

anything useful.

• To handle this, the thread scheduler canblock threads.

CS350 Operating Systems Winter 2009

Synchronization 16

Thread Blocking in OS/161

• OS/161 thread library functions:

– void thread sleep(const void *addr)

∗ blocks the calling thread on addressaddr

– void thread wakeup(const void *addr)

∗ unblock threads that are sleeping on addressaddr

• thread sleep() is much likethread yield(). The calling thread

voluntarily gives up the CPU, the scheduler chooses a new thread to run, and

dispatches the new thread. However

– after athread yield(), the calling thread isready to run again as

soon as it is chosen by the scheduler

– after athread sleep(), the calling thread is blocked, and should not

be scheduled to run again until after it has been explicitly unblocked by a

call tothread wakeup().

CS350 Operating Systems Winter 2009

Synchronization 17

Thread States

• a very simple thread state transition diagram

ready

blocked

dispatch

need resource or eventgot resource or event

running

quantum expires
or thread_yield()

(thread_sleep())(thread_wakeup())

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Winter 2009

Synchronization 18

OS/161 Semaphores: V() kern/thread/synch.c

void

V(struct semaphore *sem)

{

int spl;

assert(sem != NULL);

spl = splhigh();

sem->count++;

assert(sem->count>0);

thread wakeup(sem);

splx(spl);

}

CS350 Operating Systems Winter 2009

Synchronization 19

Mutual Exclusion Using a Semaphore

struct semaphore *s;

s = sem create("MySem1", 1); /* initial value is 1 */

P(s); /* do this before entering critical section */

critical section /* e.g., call to list remove front */

V(s); /* do this after leaving critical section */

CS350 Operating Systems Winter 2009

Synchronization 20

Producer/Consumer Synchronization

• suppose we have threads that add items to a list (producers) and threads the

remove items from the list (consumers)

• suppose we want to ensure that consumers do not consume if thelist is empty

- instead they must wait until the list has something in it

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization, as shown on the next

slide

CS350 Operating Systems Winter 2009

Synchronization 21

Producer/Consumer Synchronization using Semaphores

struct semaphore *s;

s = sem create("Items", 0); /* initial value is 0 */

Producer’s Pseudo-code:

add item to the list (call list append())

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from the list (call list remove front())

The Items semaphore does not enforce mutual exclusion on the

list. If we want mutual exclusion, we can also use semaphoresto

enforce it. (How?)

CS350 Operating Systems Winter 2009

Synchronization 22

Bounded Buffer Producer/Consumer Synchronization

• suppose we add one more requirement: the number of items in the list should

not exceedN

• producers that try to add items when the list is full should bemade to wait

until the list is no longer full

• We can use an additional semaphore to enforce this new constraint:

– semaphoreFull is used to enforce the constraint that producers should

not produce if the list is full

– semaphoreEmpty is used to enforce the constraint that consumers should

not consume if the list is empty

struct semaphore *full;

struct semaphore *empty;

full = sem create("Full", 0); /* initial value = 0 */

empty = sem create("Empty", N); /* initial value = N */

CS350 Operating Systems Winter 2009

Synchronization 23

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo-code:

P(empty);

add item to the list (call list append())

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from the list (call list remove front())

V(empty);

CS350 Operating Systems Winter 2009

Synchronization 24

OS/161 Locks

• OS/161 also uses a synchronization primitive called alock. Locks are

intended to be used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• A lock is similar to a binary semaphore with an initial value of 1. However,

locks also enforce an additional constraint: the thread that releases a lock

must be the same thread that most recently acquired it.

• The system enforces this additional constraint to help ensure that locks are

used as intended.

CS350 Operating Systems Winter 2009

Synchronization 25

Condition Variables

• OS/161 supports another common synchronization primitive: condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only usedfrom within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: this causes the calling thread to block, and it releases the lock

associated with the condition variable

signal: if threads are blocked on the signaled condition variable, then one of

those threads is unblocked

broadcast: like signal, but unblocks all threads that are blocked on the

condition variable

CS350 Operating Systems Winter 2009

Synchronization 26

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the twoconditions are:

– count > 0 (condition variablenotempty)

– count < N (condition variablenotfull)

• when a condition is not true, a thread canwait on the corresponding

condition variable until it becomes true

• when a thread detects that a condition it true, it usessignal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that

has no waiters hasno effect. Signals do not accumulate.

CS350 Operating Systems Winter 2009

Synchronization 27

Waiting on Condition Variables

• when a blocked thread is unblocked (bysignal or broadcast), it

reacquires the lock before returning from thewait call

• a thread is in the critical section when it callswait, and it will be in the

critical section whenwait returns. However, in between the call and the

return, while the caller is blocked, the caller is out of the critical section, and

other threads may enter.

• In particular, the thread that callssignal (or broadcast) to wake up the

waiting thread will itself be in the critical section when itsignals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from thewait call.

This describes Mesa-style condition variables, which are used in

OS/161. There are alternative condition variable semantics (Hoare

semantics), which differ from the semantics described here.

CS350 Operating Systems Winter 2009

Synchronization 28

Bounded Buffer Producer Using Condition Variables

int count = 0; /* must initially be 0 */
struct lock *mutex; /* for mutual exclusion */
struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created
* using lock create() and cv create() before Produce()
* and Consume() are called */

Produce(item) {
lock acquire(mutex);
while (count == N) {

cv wait(notfull, mutex);
}
add item to buffer (call list append())
count = count + 1;
cv signal(notempty, mutex);
lock release(mutex);

}

CS350 Operating Systems Winter 2009

Synchronization 29

Bounded Buffer Consumer Using Condition Variables

Consume() {
lock acquire(mutex);
while (count == 0) {

cv wait(notempty, mutex);
}
remove item from buffer (call list remove front())
count = count - 1;
cv signal(notfull, mutex);
lock release(mutex);

}

Both Produce() and Consume() call cvwait() inside of awhile

loop. Why?

CS350 Operating Systems Winter 2009

Synchronization 30

Monitors

• Condition variables are derived frommonitors. A monitor is a programming

language construct that provides synchronized access to shared data. Monitors

have appeared in many languages, e.g., Ada, Mesa, Java

• a monitor is essentially an object with special concurrencysemantics

• it is an object, meaning

– it has data elements

– the data elements are encapsulated by a set of methods, whichare the only

functions that directly access the object’s data elements

• only one monitor method may be active at a time, i.e., the monitor methods

(together) form a critical section

– if two threads attempt to execute methods at the same time, one will be

blocked until the other finishes

• inside a monitor, so calledcondition variables can be declared and used

CS350 Operating Systems Winter 2009

Synchronization 31

Monitors in OS/161

• The C language, in which OS/161 is written, does not support monitors.

• However, programming convention and OS/161 locks and condition variables

can be used to provide monitor-like behavior for shared kernel data structures:

– define a C structure to implement the object’s data elements

– define a set of C functions to manipulate that structure (these are the object

“methods”)

– ensure that only those functions directly manipulate the structure,

– create an OS/161 lock to enforce mutual exclusion

– ensure that each access method acquires the lock when it starts and

releases the lock when it finishes

– if desired, define one or more condition variables and use them within the

methods.

CS350 Operating Systems Winter 2009

Synchronization 32

Deadlocks

• Suppose there are two threads and two locks,lockA andlockB, both

intiatially unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 doeslock acquire(lockA).

2. Thread 2 doeslock acquire(lockB).

3. Thread 1 doeslock acquire(lockB) and blocks, becauselockB is

held by thread 2.

4. Thread 2 doeslock acquire(lockA) and blocks, becauselockA is

held by thread 1.

These two threads aredeadlocked - neither thread can make

progress. Waiting will not resolve the deadlock. The threads are

permanently stuck.

CS350 Operating Systems Winter 2009

Synchronization 33

Deadlocks (Another Simple Example)

• Suppose a machine has64 MB of memory. The following sequence of events

occurs.

1. ProcessA starts, using30 MB of memory.

2. ProcessB starts, also using30 MB of memory.

3. ProcessA requests an additional8 MB of memory. The kernel blocks

processA’s thread, since there is only4 MB of available memory.

4. ProcessB requests an additional5 MB of memory. The kernel blocks

processB’s thread, since there is not enough memory available.

These two processes are deadlocked.

CS350 Operating Systems Winter 2009

Synchronization 34

Resource Allocation Graph (Example)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

Is there a deadlock in this system?

CS350 Operating Systems Winter 2009

Synchronization 35

Resource Allocation Graph (Another Example)

R1 R2 R3

R4 R5

T1 T2 T3

Is there a deadlock in this system?

CS350 Operating Systems Winter 2009

Synchronization 36

Deadlock Prevention

No Hold and Wait: prevent a process from requesting resources if it currently

has resources allocated to it. A process may hold several resources, but to do

so it must make a single request for all of them.

Preemption: take resources away from a process and give them to another

(usually not possible). Process is restarted when it can acquire all the

resources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require that

each process acquire resources in increasing resource typeorder. That is, a

process may make no requests for resources of type less than or equal toi if it

is holding resources of typei.

CS350 Operating Systems Winter 2009

Synchronization 37

Deadlock Detection and Recovery

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover

from the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

processes involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can

simply test periodically. Deadlocks persist, so periodic detection will not

“miss” them.

Deadlock detection and deadlock recovery are both costly. This

approach makes sense only if deadlocks are expected to be infre-

quent.

CS350 Operating Systems Winter 2009

Synchronization 38

Detecting Deadlock in a Resource Allocation Graph

• System State Notation:

– Di: demand vector for processPi

– Ai: current allocation vector for processPi

– U : unallocated (available) resource vector

• Additional Algorithm Notation:

– T : scratch resource vector

– fi: algorithm is finished with processPi? (boolean)

CS350 Operating Systems Winter 2009

Synchronization 39

Detecting Deadlock (cont’d)

/* initialization */

T = U

fi is false if Ai > 0, else true

/* can each process finish? */

while ∃ i (¬ fi ∧ (Di ≤ T)) {

T = T + Ai

fi = true

}

/* if not, there is a deadlock */

if ∃ i (¬ fi) then report deadlock

else report no deadlock

CS350 Operating Systems Winter 2009

Synchronization 40

Deadlock Detection, Positive Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (0, 0, 0, 0, 1)

• D3 = (0, 1, 0, 0, 0)

• A1 = (1, 0, 0, 0, 0)

• A2 = (0, 2, 0, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 1, 1, 0)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

The deadlock detection algorithm will terminate withf1 ==

f2 == f3 == false, so this system is deadlocked.

CS350 Operating Systems Winter 2009

Synchronization 41

Deadlock Detection, Negative Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (1, 0, 0, 0, 0)

• D3 = (0, 0, 0, 0, 0)

• A1 = (1, 0, 0, 1, 0)

• A2 = (0, 2, 1, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 0, 0, 0)

R1 R2 R3

R4 R5

T1 T2 T3

This system is not in deadlock. It is possible that the processes will

run to completion in the orderP3, P1, P2.

CS350 Operating Systems Winter 2009

