
CS350 Operating Systems Winter 2011

Assignment Three

1 Introduction

OS/161 has a very simple virtual-memory system, called dumbvm. Assignment 3 is to replace dumbvm with
a new virtual-memory system that relaxes some (not all) of dumbvm’s limitations. Your new system will
implement a replacement policy for the TLB, so that the kernel will not crash if the TLB fills up. It will
also implement on-demand loading of pages. This will allow programs that have address spaces larger than
physical memory to run, provided that they do not touch more pages than will fit in physical memory.

2 Code Review

As was the case for the first OS/161 assignment, you should begin with a careful review of the existing
OS/161 code with which you will be working. The rest of this section of the assignment identifies some
important files for you to consider. There are no code reading questions to be answered for Assignment 3.
Nonetheless, it is important for you to understand these files.

In kern/vm

The machine-independent part of your virtual-memory implementation should go in this directory. Currently,
the only file here is addrspace.c, which contains stub implementations of several of the functions that you
will need to implement. You may wish to add additional files in this directory.

In kern/userprog

loadelf.c: This file contains the functions responsible for loading an ELF executable from the filesystem
into virtual-memory space. You should already be familiar with this file from Assignment 2. Since you
will be implementing on-demand page loading in Assignment 3, you will need to change the behaviour
that is implemented here.

In kern/lib

kheap.c: This file contains implementations of kmalloc and kfree, to support dynamic memory allocation
for the kernel. It should not be necessary for you to change the code in this file, but you do need to
understand how the kernel’s dynamic memory allocation works so that your physical-memory manager
will interact properly with it.

In kern/include

addrspace.h: Defines the addrspace interface. You will need to make changes here, at least to define an
appropriate addrspace structure.

vm.h: Some VM-related definitions, including prototypes for some key functions, such as vm fault (the
TLB miss handler) and alloc kpages (used, among other places, in kmalloc).

In kern/arch/mips/mips

dumbvm.c: This file is not used at all in Assignment 3. However, you can use the code here as a starting
point for your Assignment 3 work. This code also includes examples of how to do things like manipulate
the TLB.

1

ram.c: This file includes functions that the kernel uses to manage physical memory (RAM) while the kernel
is booting up, before the VM system has been initialized. Since your VM system will essentially be
taking over management of physical memory, you need to understand how these functions work.

In kern/arch/mips/include

In this directory, the file tlb.h defines the functions that are used to manipulate the TLB. In addition,
vm.h includes some macros and constants related to address translation on the MIPS. Note that this vm.h
is different from the vm.h in kern/include.

3 Implementation Requirements

All code changes for this assignment should be enclosed in #if OPT A3 statements, as you have done with
OPT A2 and OPT A1 in the previous assignments. For this to work, you must add #include "opt-A3.h" at
the top of any file for which you make changes for this assignment.

By default, any code changes that you made for Assignments 1 and 2 will be included in your build when
you compile for Assignment 3.

3.1 TLB Management

In the System/161 machine, each TLB entry includes a 20-bit virtual page number and a 20-bit physical-page
number as well as the following five fields:

global (1 bit): If set, ignore the pid bits in the TLB.

valid (1 bit): When the valid bit is set, the TLB entry is supposed to contain a valid translation. This
implies that the virtual page is present in physical memory. A TLB miss exception (EX TLBL or
EX TLBS) occurs when no valid TLB entry that maps the required virtual page is present in the TLB.

dirty (1 bit): In class, we used the term “dirty bit” to refer to a bit that is set by the MMU to indicate
that a page has been modified. OS/161’s “dirty” bit is not like this—it indicates whether it is possible
to modify a particular page. OS/161 can clear this bit to indicate that a page is read-only, and to force
the MMU to generate an EX MOD exception if there is an attempt to write to the page.

nocache (1 bit): Unused in System/161. In a real processor, indicates that the hardware cache will be
disabled when accessing this page.

pid (6 bits): A context or address-space ID that can be used to allow entries to remain in the TLB after
a context switch.

In OS/161, the global and pid fields are unused. This means that all of the valid entries in the TLB should
describe pages in the address space of the currently running process and the contents of the TLB should
be invalidated when there is a context switch. In the dumbvm system, TLB invalidation is accomplished
by the as activate function, which invalidates all of the TLB entries. OS/161’s context-switch code calls
as activate after every context switch (as long as the newly running thread has an address space). If
you preserve this functionality in as activate in your new VM system, you will have taken care of TLB
invalidation.

For this assignment, you are expected to write code to manage the TLB. When a TLB miss occurs,
OS/161’s exception handler should load an appropriate entry into the TLB. If there is free space in the TLB,
the new entry should go into free space. Otherwise, OS/161 should choose a TLB entry to evict and evict it
to make room for the new entry. As described above, OS/161 should also take care to ensure that all TLB
entries refer to the currently running process.

2

Round-Robin TLB Replacement

You must implement a very simple (but dumb) round-robin TLB replacement policy. This is like first-in-
first-out except that we do not actually worry about when each page was replaced and the algorithm works
as follows:

int

tlb_get_rr_victim()

{

int victim;

static unsigned int next_victim = 0;

victim = next_victim;

next_victim = (next_victim + 1) % NUM_TLB;

return victim;

}

This round-robin algorithm must be used by default in your kernel.

Alternative TLB Replacement

In addition to round-robin you must implement a second alternative TLB replacement algorithm of your
choosing. If possible, try to implement an algorithm that does a better job of choosing victims than the
default round-robin policy.

You must modify the menu code so that this algorithm can be selected by issuing the menu command
tlbalg. Note that this command must change the TLB replacement algorithm from the default to the
alternative algorithm you have implemented (it does not need to change it back). This changes the algorithm
used for the duration of the kernel’s execution. If the tlbalg command is not issued, the default algorithm
will be used. This will allow one to test this algorithm by doing something like:

// Test using the alternative algorithm

sys161 kernel "tlbalg; p testbin/program; q"

This would set the TLB replacement algorithm to your alternative TLB replacement algorithm, print a
message stating the new algorithm is being used, and then run testbin/program.

The default algorithm would be used as follows:

// Test using the default algorithm

sys161 kernel "p testbin/program; q"

Instrumentation

You will be tracking and printing several statistics (more details will be provided in Section 3.4) related to
the performance of the virtual memory sub-system (including TLB misses and TLB replacements) so be
certain to implement this as described so we can easily examine and compare these statistics.

As part of your design document you will run some experiments to compare these two algorithms.

3.2 Read-Only Text Segment

In the dumbvm system, all three address-space segments (text, data, and stack) are both readable and
writable by the application. For this assignment, you should change this so that each application’s text
segment is read-only. Your kernel should set up TLB entries so that any attempt by an application to modify
its text section will cause the MIPS MMU to generate a read-only memory exception (VM FAULT READONLY).
If such an exception occurs, your kernel should terminate the process that attempted to modify its text
segment. Your kernel should not crash.

3

3.3 On-Demand Page Loading

Currently, when OS/161 loads a new program into an address space using runprogram (and, presumably, in
your implementation of execv from Assignment 2), it pre-allocates physical frames for all of the program’s
virtual pages, and it pre-loads all of the pages into physical memory.

For this assignment, you are required to change this so that physical frames are allocated on-demand and
virtual pages are loaded on demand. “On demand” means that that the page should be loaded (and physical
space should be allocated for it) the first time that the application tries to use (read or write) that page.
Pages that are never used by an application should never be loaded into memory and should not consume a

physical frame.

In order to do this, your kernel will need to have some means of keeping track of which parts of physical
memory are in use and which parts can be allocated to hold newly-loaded virtual pages. Your kernel will
also need a way to keep track of which pages from each address space have been loaded into physical memory
and where in physical memory they have been loaded.

Since a program’s pages will not be pre-loaded into physical memory when the program starts running,
and since the TLB only maps pages that are in memory, the program will generate TLB miss exceptions as
it tries to access its virtual pages. Here is a high-level description of what the OS/161 kernel must do when
the MMU generates a TLB miss exception for a particular page:

• Determine whether the page is already in memory.

• If it is already in memory, load an appropriate entry into the TLB (replacing an existing TLB entry if
necessary) and then return from the exception.

• If it is not already in memory, then

– Allocate a place in physical memory to store the page.

– Load the page, using information from the program’s ELF file to do so.

– Update OS/161’s information about this address space.

– Load an appropriate entry into the TLB (replacing an existing TLB entry if necessary) and return
from the exception.

You are not required to implement page replacement for this assignment. Because you will not implement
page replacement, you will not be able to run applications that touch more pages than will fit into physical
memory, but you should be able to run large programs provided that those programs do not touch more
pages than will fit.

3.4 Instrumentation

You are required to add instrumentation to your kernel to collect and display some statistics related to
virtual-memory activity. You are required to collect the following statistics:

TLB Faults: The number of TLB misses that have occurred (not including faults that cause a program to
crash).

TLB Faults with Free: The number of TLB misses for which there was free space in the TLB to add the
new TLB entry (i.e., no replacement is required).

TLB Faults with Replace: The number of TLB misses for which there was no free space for the new
TLB entry, so replacement was required.

TLB Invalidations: The number of times the TLB was invalidated (this counts the number times the
entire TLB is invalidated NOT the number of TLB entries invalidated)

TLB Reloads: The number of TLB misses for pages that were already in memory.

Page Faults (Zeroed): The number of TLB misses that required a new page to be zero-filled.

4

Page Faults (Disk): The number of TLB misses that required a page to be loaded from disk.

There is code provided on the assignments web page that defines counters for collecting
these statistics and functions for manipulating and printing these counters. You are required
to use this code when you collect statistics.

Note that the sum of “TLB Faults with Free” and “TLB Faults with Replace” should be equal to “TLB
Faults.” Also, the sum of “TLB Reloads,” “Page Faults (Disk),” and “Page Faults (Zeroed)” should be equal
to “TLB Faults.” So this means that you should not count TLB faults that do not get handled (i.e., result
in the program being killed). The code for printing out stats will print a warning if this these equalities do
not hold.

When it is shut down (e.g., in vm shutdown), your kernel should display the statistics it has gathered.
The display should look precisely like the example below (be sure to use the code provided).

Shutting down.

VMSTATS:

VMSTAT TLB Faults = 1954

VMSTAT TLB Faults with Free = 64

VMSTAT TLB Faults with Replace = 1890

VMSTAT TLB Invalidations = 1

VMSTAT TLB Reloads = 1662

VMSTAT Page Faults (Zeroed) = 289

VMSTAT Page Faults (Disk) = 3

VMSTAT TLB Faults with Free + TLB Faults with Replace = 1954

VMSTAT TLB Reloads + Page Faults (Zeroed) + Page Faults (Disk) = 1954

The system is halted.

sys161: 139539820 cycles (56141873k, 82003161u, 1394786i)

sys161: 1296 irqs 1965 exns 0r/0w disk 0r/1226w console 10r/0w/2m emufs 0r/0w net

sys161: Elapsed real time: 9.986450 seconds (13.9729 mhz)

sys161: Elapsed virtual time: 5.581592800 seconds (25 mhz)

3.5 Physical-Memory Management

The dumbvm system does not provide any way to re-use physical memory. Once physical memory has been
allocated, there is no way to free it when it is no longer needed. As a result, the kernel will quickly run out
of physical memory.

Your VM system must manage physical memory so that it can be re-used. In particular, when a process
terminates, any physical frames that were used to hold that process’s pages should be freed, and they should
be available for use to hold pages from other processes. This will require your kernel to provide some
mechanism for keeping track of which frames are free and which have been allocated.

Your physical-memory manager should also support dynamic memory allocation of kernel data structures,
via kmalloc and kfree. The simplest way to do this is to change the implementations of the functions
alloc kpages and free kpages. alloc kpages is called by kmalloc when it needs additional pages, i.e.,
frames) of physical memory to manage. Similarly, free kpages is called by kfree if there are frames that
it no longer requires. You should modify alloc kpages to obtain the frames it needs from your physical-
memory manager. Similarly, free kpages should return freed frames to your physical-memory manager so
that it can re-use them for other purposes.

Note that some of the physical memory of the machine is used to hold the kernel’s code and data. In
addition, when the kernel is booting—and before your VM system has been initialized—the kernel will
dynamically allocate additional memory for its data structures. OS/161 has a simple physical-memory
allocation mechanism (in arch/mips/mips/ram.c) which will support these early memory allocations. When
you initialize your VM system, you will need to make sure that it is aware of which parts of physical memory
are already being used by the kernel, so that it does not mistakenly allocate them for some other purpose.
Your VM system is not required to re-use any parts of physical memory that are allocated to the kernel
before your VM system is initialized—though it is allowed to do so, provided the kernel frees up the space.

5

Once your VM system has been initialized, all subsequent physical-memory requests (via alloc kpages

and free kpages) from the kernel should be handled by your VM system.

4 Configuring and Building

Before you do any coding for Assignment 3, you will need to reconfigure your kernel for this assignment.
Follow the same procedure that you used to configure for the first two assignments, but use the ASST3
configuration file instead:

% cd cs350-os161/os161-1.11/kern/conf

% ./config ASST3

% cd ../compile/ASST3

% make depend

% make

% make install

Warning: Once you reconfigure your kernel for Assignment 3, it will probably not compile.
Even if it does compile, it will no longer work. This is normal. It happens because your kernel relied,
for Assignments 1 and 2, on the dumbvm virtual-memory implementation. In Assignment 3, the dumbvm

implementation is no longer configured to be part of your kernel, i.e., it is ignored. For this assignment,
you will be re-implementing the functions that were formerly implemented by dumbvm. Until you do that,
anything that relied on dumbvm (which means most of your kernel) will not work.

5 Where to Start

You should start your work on this assignment by studying and understanding how the dumbvm implemen-
tation works. Also have a look at the addrspace stubs, and think about what changes you will need to make
to dumbvm to meet the requirements for this assignment.

Your initial focus should be on getting your kernel back to a state in which you can run a single simple
program (e.g., palin) from the kernel command menu.

Once this is done, we recommend that you implement the various parts of the assignment in the following
order:

1. TLB Management

2. Instrumentation

3. Read-Only Text Segment

4. On-Demand Page Loading

5. Physical-Memory Management

6. Alternative TLB Replacement Algorithm

It is probably best to implement and test these features in this order. Keeping in mind that in the end you
would like to have all features implemented (e.g., when designing and implementing your TLB management,
keep in mind that you’ll be implementing two different algorithms for choosing a victim).

Some of our testing will be based on the statistics that are produced by your instrumentation, so you
should definitely get that working before you start work on the last two parts of the assignment.

6

6 Design Questions

You are expected to prepare short answers to the following questions about your work on A3.

Question 1: Briefly describe the data structure(s) that your kernel uses to manage the allocation of physical
memory. What information is recorded in this data structure? When your VM system is initialized,
how is the information in this data structure initialized?

Question 2: When a single physical frame needs to be allocated, how does your kernel use the above data
structure to choose a frame to allocate? When a physical frame is freed, how does your kernel update
the above data structure to support this?

Question 3: Does your physical-memory system have to handle requests to allocate/free multiple (phys-
ically) contiguous frames? Under what circumstances? How does your physical-memory manager
support this?

Question 4: Are there any synchronization issues that arise when the above data structures are used? Why
or why not?

Question 5: Briefly describe the data structure(s) that your kernel uses to describe the virtual address
space of each process. What information is recorded about each address space?

Question 6: When your kernel handles a TLB miss, how does it determine whether the required page is
already loaded into memory?

Question 7: If, on a TLB miss, your kernel determines that the required page is not in memory, how does
it determine where to find the page?

Question 8: How does your kernel ensure that read-only pages are not modified?

Question 9: What alternative TLB replacement algorithm did you implement? Why did you choose this
algorithm? What were some of the issues you encountered when trying to design and implement an
alternative algorithm? Describe one or two interesting experiments you ran comparing the performance
of your two replacement algorithms and discuss the results of these experiments.

If portions of your design are not implemented, you may still receive some credit for well thought-
out answers to these questions, but if your implementation does not match your design, your design
document must clearly indicate which parts of the design are not implemented, or are not
implemented as described in your answers. Submission of answers that do not match the
submitted implementation (and which do not flag any such differences) will be considered an
act of academic dishonesty.

Please prepare your design document as a PDF file called design3.pdf. This document should be at

most four pages long using an 11 point (or larger) font and 1 inch (or larger) top, bottom and side margins.

7 What to Submit

You should submit your kernel source code and your design document using the cs350 submit command,
as you did for the previous assignments. It is important that you use the cs350 submit command. Do not
use the regular submit command directly.

Assuming that you followed the standard OS/161 setup instructions, your OS/161 source code will be
located in $HOME/cs350-os161/os161-1.11. To submit your work, you should

1. place design3.pdf in the directory $HOME/cs350-os161/

2. run /u/cs350/bin/cs350 submit in the directory $HOME/cs350-os161/

7

This will package up your OS/161 kernel code and submit it, along with the PDF file, to the course account.
Important: The cs350 submit script packages and submits everything under the os161-1.11/kern

directory, except for the subtree os161-1.11/kern/compile. You are permitted to make changes to the
OS/161 source code outside the kern subdirectory. For example, you might create a new test program under
testbin. However, such changes will not be submitted when you run cs350 submit. Only your kernel code,
under os161-1.11/kern, will be submitted.

8

