Synchronization 1

Concurrency

e On multiprocessors, several threads can execute simalialye one on each
processor.

¢ On uniprocessors, only one thread executes at a time. Howe@ause of
preemption and timesharing, threads appear to run comtlyre

Concurrency and synchronization are important even ormocgssors.

CS350 Operating Systems Winter 2014

Synchronization 2

Thread Synchronization

e Concurrent threads can interact with each other in a vaoietyays:

— Threads share access, through the operating system, ¢éorsglsvices (more
on this later. .)

— Threads may share access to program data, e.g., globdblesria
e A common synchronization problem is to enforoatual exclusion, which

means making sure that only one thread at a time uses a shgeetl @.g., a
variable or a device.

e The part of a program in which the shared object is accesssdlex! acritical
section.

CS350 Operating Systems Winter 2014

Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int volatile total = O;
void add() { void sub() {
int i; int i;
for (i=0; i<N, i++) { for (i=0; i<N, i++) {
t ot al ++; total --;
¥ ¥
} }

If one thread executesdd and another executessib what is the value of
t ot al when they have finished?

CS350 Operating Systems Winter 2014

Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int volatile total = O0;
void add() { void sub() {
| oadaddr R8 tot al | oadaddr R10 t ot al
for (i=0; i<N, i++) { for (i=0; i<N, i++) {
lw R9 0O(R8) lw R11 O(R10)
add R9 1 sub R11 1
sw R9 O(R8) sw R11 0O(R10)
¥ }
} }

CS350 Operating Systems Winter 2014

Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2
| oadaddr R8 total
lw RO 0O(R8) R9=0

add RO 1 Ro=1
<| NTERRUPT>
| oadaddr R10 t ot al
lw R11 O(R10) R11=0
sub R11 1 R11=-1
sw R11 0O(R10) total =-1
<| NTERRUPT>

sw RO O(R8) total =1

One possible order of execution.

CS350 Operating Systems Winter 2014

Synchronization 6

Critical Section Example (Part 0)

Thread 1 Thread 2
| oadaddr R8 total
lw RO 0(R8) R9=0

<| NTERRUPT>
| oadaddr R10 t ot al
lw R11 O(R10) R11=0
<| NTERRUPT>
add RO 1 R9=1
sw RO O(R8) total =1
<| NTERRUPT>

sub R11 1 R11=-1
sw R11 O(R10) total =-1

Another possible order of execution. Many interleavinggefructions are
possible. Synchronization is required to ensure a cormelerog.

CS350 Operating Systems Winter 2014

Synchronization

The use of volatile

[What if we DO NOT use volatile =/

int velatile total = O;
void add() { void sub() {
| oadaddr R8 t ot al | oadaddr R10 t ot al
| w RO 0(R8) lw R11 O(R10)
for (i=0; i<N, i++) { for (i=0; i<N i++) {
add RO 1 sub R11 1
¥ }
sw R9 O(R8) sw R11 0(R10)
} }

Without volatile the compiler could optimize the code. liedthread executes
add and another executasib, what is the value of ot al when they have
finished?

CS350 Operating Systems Winter 2014

Synchronization

The use of volatile

[What if we DO NOT use volatile =/

int velatile total = O;
void add() { void sub() {
| oadaddr R8 t ot al | oadaddr R10 t ot al
| w RO 0(R8) lw R11 O(R10)
add RO N sub R11 N
sw RO O(R8) sw R11 0O(R10)
¥ ¥

The compiler could aggressively optimize the code., Vidaglls the com-
piler that the object may change for reasons which cannotebermined
from the local code (e.g., due to interaction with a devicberause of an-
other thread).

CS350 Operating Systems Winter 2014

Synchronization 9

The use of volatile

/* Note the use of volatile */

int volatile total = O;
void add() { void sub() {
| oadaddr R8 tot al | oadaddr R10 t ot al
for (i=0; i<N, i++) { for (i=0; i<N, i++) {
lw R9 0O(R8) lw R11 O(R10)
add RO 1 sub R11 1
sw R9 O(R8) sw R11 0O(R10)
¥ }
} }

The volatile declaration forces the compiler to load andestbe value on
every use. Using volatile is necessary but not sufficientdéorect behaviour.
Mutual exclusion is also required to ensure a correct ondesf instructions.

CS350 Operating Systems Winter 2014

Synchronization 10

Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = O;
void add() { void sub() {
int i; int i;
for (i=0; i<N, i++) { for (i=0; i<N, i++) {
Al'l ow one thread to execute and make ot hers wait
t ot al ++; total --;
Permt one waiting thread to continue execution
¥ ¥
} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Winter 2014

Synchronization 11

Critical Section Example (Part 1)

int listoremovefront(list *xlp) {
int num
i st_el enent *el enent;

assert(!is_enpty(lp));

el ement = | p->first;

num = | p->first->item

if (Ip->first == Ip->last) {
| p->first = Ip->last = NULL;

} else {

| p->first = el ement->next;
} .
| p->num.in_list--;
free(el enent);
return num

}
Thel i st _renove_f ront function is a critical section. It may not work
properly if two threads call it at the same time on the singt . (Why?)
CS350 Operating Systems Winter 2014
Synchronization 12

Critical Section Example (Part 2)

void |ist_append(list *=Ip, int newitem {
list_element *elenment = malloc(sizeof(list_elenent));
el enent->item = new.item
assert(!isinlist(lp, newiten));
if (isenpty(lp)) {
| p->first = elenent; |p->last = el enent;
} else {
| p- >l ast->next = elenent; |p->last = el enment;

}

| p- >numi n_l i st ++;

The | i st _append function is part of the same critical section as
I'ist_renmovefront. It may not work properly if two threads call

it at the same time, or if a thread calls it while another haleda

l'ist_renove_front

CS350 Operating Systems Winter 2014

Synchronization 13

Enforcing Mutual Exclusion

e mutual exclusion algorithms ensure that only one threadiat@executes the
code in a critical section

e several techniques for enforcing mutual exclusion

— exploit special hardware-specific machine instructiorgs, est-and-set,
compare-and-swap, or load-link / store-conditional, that are intended for
this purpose

— use mutual exclusion algorithms, e.Beferson’s algorithm, that rely only
on atomic loads and stores

— control interrupts to ensure that threads are not preenvpitdd they are
executing a critical section

CS350 Operating Systems Winter 2014

Synchronization 14

Disabling Interrupts

e On a uniprocessor, only one thread at a time is actually ngani

¢ If the running thread is executing a critical section, muagx@lusion may be
violated if

1. the running thread is preempted (or voluntarily yieldg)levit is in the
critical section, and

2. the scheduler chooses a different thread to run, and ¢kwdhread enters
the same critical section that the preempted thread was in

e Since preemption is caused by timer interrupts, mutualuskeh can be
enforced by disabling timer interrupts before a threadrsrttee critical section,
and re-enabling them when the thread leaves the criticéibsec

CS350 Operating Systems Winter 2014

Synchronization 15

Interrupts in OS/161

This is one way that the OS/161 kernel enforces mutual exgium a single
processor. There is a simple interface

e spl O() sets IPL to O, enabling all interrupts.

e spl hi gh() sets IPL to the highest value, disabling all interrupts.

e spl x(s) setsIPLto S, enabling whatever state S represents.
These are used by splx() and by the spinlock code.

e splraise(int oldipl, int newpl)

e spllower(int oldipl, int newpl)

e For splraiseNEW PL > QOLDI PL, and for spllowerNEW PL < OLDI PL.

Seekern/i ncl ude/ spl . h andkern/t hread/ spl.c

CS350 Operating Systems Winter 2014

Synchronization 16

Pros and Cons of Disabling Interrupts

e advantages:
— does not require any hardware-specific synchronizatidnuicisons

— works for any number of concurrent threads

¢ disadvantages:

— indiscriminate: prevents all preemption, not just preearpthat would
threaten the critical section

— ignoring timer interrupts has side effects, e.g., kernalware of passage of
time. (Worse, OS/161’spl hi gh() disablesall interrupts, not just timer
interrupts.) Keep critical sectiorshort to minimize these problems.

— will not enforce mutual exclusion on multiprocessors (Why?

CS350 Operating Systems Winter 2014

Synchronization 17

Peterson’s Mutual Exclusion Algorithm

/= shared variabl es */

/* note: one flag array and turn variable */

/= for each critical section */

bool ean volatile flag[2]; /* shared, initially false =/

int volatile turn; /= shared =/
flag[i] = true; /= for one thread, :=0 and j=1 */
turn = j; [+ for the other, i=1 and j=0 */

while (flag[j] && turn ==j) { } [/* busy wait =/
critical section /* e.g., call to list_renovefront =/

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but workg for two
threads. (Why?)

CS350 Operating Systems Winter 2014

Synchronization 18

Hardware-Specific Synchronization Instructions

e atest-and-set instructiatomically sets the value of a specified memory
location and either

— places that memory locationd value into a register, or

— checks a condition against the memory location’s old vaheeracords the
result of the check in a register

o for presentation purposes, we will abstract such an instruas a function
Test AndSet (addr ess, val ue), which takes a memory location
(addr ess) and a value as parameters. It atomically stor@sue at the
memory location specified lyddr ess and returns the previous value stored
at that address

e Often only two values are used 0 and 1 sovla¢ ue parameter is not used and
a value of 1 is implied (e.g., in OS/161)

CS350 Operating Systems Winter 2014

Synchronization 19

A Spin Lock Using Test-And-Set in 0S/161

e a test-and-set instruction can be used to enforce mutuhls®n

¢ for each critical section, define a shared variable
volatile spinlockdatat lklock; /* initially 0 */
We will use the lock variable to keep track of whether there ikread in the
critical section, in which case the valueldf_| ock will be 1

e before a thread can enter the critical section, it does th@fmng:

whi | e (spinlock_data_testandset (& k->Ik_lock) !'=0) {
[* busy wait x/

}

o if | k_l ock == Othenitis setto 1l and the thread enters the critical section

o when the thread leaves the critical section, it does:

spi nl ock_dat a_set (& k->I k_l ock, 0);

CS350 Operating Systems Winter 2014

Synchronization 20

A Spin Lock Using Test-And-Set

¢ this enforces mutual exclusion (why?), but starvation isssgbility

This construct is sometimes known aspan lock, since a thread “spins” in
the while loop until the critical section is free. Spin lock® widely used on
multiprocessors.

CS350 Operating Systems Winter 2014

Synchronization 21

Spinlocks in OS/161

struct spinlock {
vol atile spinlock _data_t |k _lock; /* word for spin =/
struct cpu *l k_holder; /+ CPU holding this |lock =*/

b

voi d spinlock init(struct spinlock *IKk);

voi d spinlock _cl eanup(struct spinlock *I|k);
voi d spinlock _acquire(struct spinlock *Ilk);
voi d spinlock_rel ease(struct spinlock *lk);
bool spinlock_do_i_hold(struct spinlock *lKk);

CS350 Operating Systems Winter 2014

Synchronization 22

Spinlocks in 0S/161

spinlock_init(struct spinlock *IKk)

{
spi nl ock_data set (& k->Ik_| ock, 0);
| kK->l k_hol der = NULL;
}
voi d spi nlock_cl eanup(struct spinlock =*Ik)
{
KASSERT(| k- >l k_hol der == NULL);
KASSERT(spi nl ock_data_get (& k->I k_| ock) == 0);
}

voi d spinlock data set(volatile spinlock data t =*sd,
unsi gned val)

{

x*sd = val
}

CS350 Operating Systems Winter 2014

Synchronization 23

Spinlocks in OS/161

voi d spinlock_acquire(struct spinlock *|k)
{

struct cpu *mycpu;

splraise(l PL_NONE, |PL_H GH;

/* this nust work before curcpu initialization */
i f (CURCPU_EXI STS()) {

mycpu = curcpu->c_sel f;

if (Ik->k_holder == nmycpu) {

pani c(" Deadl ock on spinlock %\n", |Kk);

}
} else {

mycpu = NULL;

CS350 Operating Systems Winter 2014

Synchronization 24

Spinlocks in 0S/161

while (1) {
/* Do test-test-and-set to reduce bus contention =*/
if (spinlock data_get(& k->Ik_lock) !'=0) {
conti nue;

}
if (spinlock data_ testandset(& k->Ik lock) !'= 0) {
conti nue;

}

br eak;

| k->I k_hol der = nycpu;

CS350 Operating Systems Winter 2014

Synchronization 25

Spinlocks in OS/161

voi d spinlock_rel ease(struct spinlock *|k)
{
/* this nust work before curcpu initialization */
i f (CURCPU_EXI STS()) {
KASSERT(| k- >l k_hol der == curcpu->c_self);

| kK->l k_hol der = NULL;
spi nl ock_dat a_set (& k->I k_| ock, 0);
spl lower (1 PL_H GH, |PL_NONE);

CS350 Operating Systems Winter 2014
Synchronization 26

Load-Link / Store-Conditional

Load-link returns the current value of a memory locationilevh subsequent
store-conditional to the same memory location will storewa nalue only if no
updates have occurred to that location since the load-link.

spi nl ock_dat a_t estandset (vol atile spinlock_data_t =*sd)

{

spinl ock_data_t x,vy;

/ = Test-and-set using LL/SC.
* Load the existing value into X, and use Y to store 1.
* After the SC, Y contains 1 if the store succeeded,
* 0 if it failed. On failure, return 1 to pretend
* that the spinlock was al ready hel d.

CS350 Operating Systems Winter 2014

Synchronization 27

Load-Link / Store-Conditional

__asmvolatil e(

".set push;” [+ save assenbl er node =/
".set mps32;" [+ allow MPS32 instructions =/
".set volatile;" [/* avoid unwanted optim zation */
"Il 9%®, O(w);" [* X = *sd */
"sc wd, O(w);" [* *sd = y; y = success? */
".set pop" /* restore assenbl er node =*/
II:rII (X), Il+rll (y) : Ilrll (Sd));
if (y ==0) {
return 1;
}
return x;
}
CS350 Operating Systems Winter 2014
Synchronization 28
Pros and Cons of Spinlocks
e Pros:
— can be efficient for short critical sections
— using hardware specific synchronization instructions raéamorks on
multiprocessors
e Cons:

— CPU is busy (nothing else runs) while waiting for lock

— starvation is possible

If critical section is short prefer spinlock.
If critical section is long prefer blocking lock.
Hybrid locks will spin for a period of time before blocking.

Question: How to determine how long to spin for hybrid lock?

CS350 Operating Systems Winter 2014

Synchronization 29

Semaphores

e A semaphore is a synchronization primitive that can be usemforce mutual
exclusion requirements. It can also be used to solve othelslof
synchronization problems.

e A semaphore is an object that has an integer value, and thpbds two
operations:

P: if the semaphore value is greater ttardecrement the value. Otherwise,
wait until the value is greater thanand then decrement it.

V. increment the value of the semaphore

e Two kinds of semaphores:
counting semaphores:can take on any non-negative value

binary semaphores: take on only the valuegand1. (V on a binary
semaphore with valué has no effect.)

By definition, theP andV operations of a semaphore atemic.

CS350 Operating Systems Winter 2014

Synchronization 30

A Simple Example using Semaphores

void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N i++) {
P(sen; P(sem;
t ot al ++; total --:
V(sen; V(sem;
¥ ¥
} }

What type of semaphore can be useddenf

CS350 Operating Systems Winter 2014

Synchronization 31

0S/161 Semaphores

struct semaphore {
char *semnane;
struct wchan *semwchan;
struct spinlock seml ock;
vol atile int semcount;

%

struct semaphore *semcreate(const char =*nane,
int initial _count);

voi d P(struct semaphore *s);

voi d V(struct semaphore *s);

voi d semdestroy(struct senmaphore =*s);

seeker n/ i ncl ude/ synch. h andker n/t hread/ synch. c

CS350 Operating Systems Winter 2014

Synchronization 32

Mutual Exclusion Using a Semaphore

struct senmaphore =*s;
s = semcreate("MySeml", 1); /* initial value is 1 */

P(s); /+* do this before entering critical section =/
critical section /* e.g., call to list_renovefront =/

V(s); /* do this after leaving critical section x/

CS350 Operating Systems Winter 2014

Synchronization 33

0S/161 SemaphoresP() from kern/thread/ synch. c
P(struct semaphore *sem
{
KASSERT(sem ! = NULL);
KASSERT(curt hread->t .in_.interrupt == fal se);

spi nl ock_acqui re(&sem >seml ock) ;
whil e (sem >semcount == 0) {
/* Note: we don’t maintain strict FIFO ordering */
wchan_| ock(sem >semwchan) ;
spi nl ock_rel ease(&sem >seml ock) ;
wchan_sl eep(sem >semwchan) ;
spi nl ock_acqui re(&sem >seml ock) ;
¥
KASSERT(sem >semcount > 0);
sem >semcount - -;
spi nl ock_rel ease(&em >seml ock) ;

CS350 Operating Systems Winter 2014
Synchronization 34

0S/161 SemaphoresY() from kern/thread/ synch. c

V(struct semaphore *sem

{
KASSERT(sem ! = NULL);

spi nl ock_acqui re(&em >seml ock) ;
sem >semcount ++;
KASSERT(semt >semcount > 0);

wchan_wakeone(sem >semwchan) ;

spi nl ock_rel ease(&em >seml ock) ;

}

CS350 Operating Systems Winter 2014

Synchronization 35

Thread Blocking

e Sometimes a thread will need to wait for an event. One examspe the
previous slide: a thread that attempt8(g operation on a zero-valued
semaphore must wait until the semaphore’s value becomés/pos

e other examples that we will see later on:

— wait for data from a (relatively) slow device
— wait for input from a keyboard
— wait for busy device to become idle

e In these circumstances, we do not want the thread to rure #icannot do
anything useful.

e To handle this, the thread scheduler bhock threads.

CS350 Operating Systems Winter 2014

Synchronization 36

Thread Blocking in OS/161

e OS/161 thread library functions for blocking and unblogkthreads:

voi d wchan_l ock(struct wchan *wc);

voi d wchan_unl ock(struct wchan *wc);
* |locks/unlocks the wait channet

voi d wchan_sl eep(struct wchan *wc);
« blocks calling thread on wait channst
« channel must be locked, will be unlocked upon return

voi d wchan_wakeal | (struct wchan *wc);
« unblock all threads sleeping on wait channel

voi d wchan_wakeone(struct wchan *wc);
x unblock one thread sleeping on wait channel

Note: current implementation is FIFO but not promised byitherface

CS350 Operating Systems Winter 2014

Synchronization 37

Thread Blocking in OS/161

e wchan_sl eep() is much liket hr ead_yi el d() . The calling thread is
voluntarily giving up the CPU, so the scheduler chooses athesad to run, the
state of the running thread is saved and the new thread iatdisgd. However:

— after at hr ead_yi el d(), the calling thread iseady to run again as soon
as it is chosen by the scheduler

— afterawchan_sl eep() , the calling thread iblocked, and must not be
scheduled to run again until after it has been explicitlylaoked by a call
towchan_wakeone() orwchan_wakeal | ().

CS350 Operating Systems Winter 2014

Synchronization 38

Thread States

e avery simple thread state transition diagram

guantum expires
or thread_yield()

dispatch

got resource or event need resource or event

(wchan_wakeone/all() (wchan_sleep())
blocked

¢ the states:
running: currently executing
ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Winter 2014

Synchronization 39

Producer/Consumer Synchronization
e suppose we have threads that add items to a list (producedtheeads that
remove items from the list (consumers)

e suppose we want to ensure that consumers do not consumdigttiseempty -
instead they must wait until the list has something in it

e this requires synchronization between consumers and peosiu

e semaphores can provide the necessary synchronizationpas ®n the next

slide
CS350 Operating Systems Winter 2014
Synchronization 40

Producer/Consumer Synchronization using Semaphores

struct semaphore =*s;
s = semcreate("ltens”, 0); /* initial value is 0 */

Pr oducer’ s Pseudo- code:
add itemto the list (call 1ist_append())
V(s);

Consuner’ s Pseudo- code:
P(s);
renove itemfromthe list (call list_oremovefront())

The Items semaphore does not enforce mutual exclusion olisthéf we
want mutual exclusion, we can also use semaphores to enfofew?)

CS350 Operating Systems Winter 2014

Synchronization 41

Bounded Buffer Producer/Consumer Synchronization

e suppose we add one more requirement: the number of items listtshould
not exceedN

e producers that try to add items when the list is full shouldrzele to wait until
the list is no longer full
e We can use an additional semaphore to enforce this new aontstr

— semaphoré&ul | is used to count the number of full (occupied) entries in
the list (to ensure nothing is produced if the list is full)

— semaphor&npt y is used to count the number of empty (unoccupied)
entries in the list (to ensure nothing is consumed if thadigmpty)

struct semaphore *full;
struct senmaphore *enpty;

full = semcreate("Full", 0); [+ initial value = 0 */
enpty = semcreate("Enpty", N); /* initial value = N */
CS350 Operating Systems Winter 2014
Synchronization 42

Bounded Buffer Producer/Consumer Synchronization with Senaphores

Producer’s Pseudo- code:
P(enpty);
add itemto the list (call 1ist_append())
V(full);

Consuner’ s Pseudo- code:
P(full);
renove itemfromthe list (call list_orenmovefront())
V(enpty);

CS350 Operating Systems Winter 2014

Synchronization 43

0S/161 Locks

e OS/161 also uses a synchronization primitive calléock Locks are intended
to be used to enforce mutual exclusion.

struct lock *mylock = | ock_create("LockNanme");

| ock_aqui re(nyl ock);
critical section /* e.g., call to list_renovefront =/
| ock_r el ease(nmyl ock) ;

e Alock is similar to a binary semaphore with an initial valuelo However,
locks also enforce an additional constraint: the threatriaeases a lock must
be the same thread that most recently acquired it.

e The system enforces this additional constraint to helprenthat locks are used

as intended.
CS350 Operating Systems Winter 2014
Synchronization 44

Reader/Writer Locks

e Reader/Writer (or a shared) locks can be acquired in eitheyaal (shared) or
write (exclusive) mode

e In OS/161 reader/writer locks might look like this:

struct rw ock *rwl ock = rwl ock_create("RANock");

rw ock_aquire(rw ock, READ _MODE);
can only read shared resources
/| = access is shared by readers =/
rw ock_rel ease(rw ock);

rw ock_aquire(rw ock, WRI TE_MODE) ;
can read and wite shared resources
/* access is exclusive to only one witer =/
rw ock_rel ease(rw ock) ;

CS350 Operating Systems Winter 2014

Synchronization 45

Critical Section Requirements
e Mutual exclusion: While one thread is executing in the critical section naeoth
thread can execute in that critical section.

e Progress The thread in the critical section will eventually leave tritical
section.

e Bounded waiting: Any thread will wait for a bounded amount of time before it
is able to enter the critical section.

CS350 Operating Systems Winter 2014

Synchronization 46

Performance Issues
e Overhead the memory and CPU resources used when acquiring andirgjeas
access to critical sections
e Contention: competition for access to the critical section

e Granularity : the amount of code executed while in a critical section

Why are these important issues?

CS350 Operating Systems Winter 2014

Synchronization a7

Lock Overhead, Contention and Granularity (Option 1)

void add() { void sub() {
int i; int i;
for (i=0; i<N i++) { for (i=0; i<N i++) {
P/ Acquire P/ Acquire
t ot al ++; total --;
V /| Rel ease V /| Rel ease
¥ }
} }

ShouldoneusB()/ V() ,spi nl ock_acquire()/spinl ock_rel ease()
orl ock_acquire()/1 ock_rel ease?

CS350 Operating Systems Winter 2014

Synchronization 48

Lock Overhead, Contention and Granularity (Option 2)

void add() { void sub() {
int i; int i;
P/ Acquire P/ Acquire
for (i=0; i<N i++) { for (i=0; i<N i++) {
t ot al ++; total --;
¥ ¥
V /| Rel ease V /| Rel ease
} }

Which option is better Option 1 (previous slide) or 2 (thislg)? Why?

Does the choice of where to do synchronization influencetibece of which
mechanism to use for synchronization?

CS350 Operating Systems Winter 2014

Synchronization 49

Condition Variables

e OS/161 supports another common synchronization primiteedition
variables

e each condition variable is intended to work together witbcki condition
variables are only usefdom within the critical section that is protected by the
lock

¢ three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releasesthedssociated
with the condition variable. Once the thread is unblockedatquires the
lock.

signal: If threads are blocked on the signaled condition variablen tone of
those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the
condition variable.

CS350 Operating Systems Winter 2014

Synchronization 50

Using Condition Variables

e Condition variables get their name because they allow tsréawait for
arbitrary conditions to become true inside of a criticaltmec

¢ Normally, each condition variable corresponds to a pdedrccondition that is
of interest to an application. For example, in the bounddtkbu
producer/consumer example on the following slides, thedaraditions are:

— count > 0 (condition variablenot enpt y)
— count < N (condition variablenot f ul |)

e when a condition is not true, a thread asmi t on the corresponding condition
variable until it becomes true

e when a thread detects that a condition is true, it ssemal orbr oadcast
to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition Valeathat has no
waiters haso effect. Signals do not accumulate.

CS350 Operating Systems Winter 2014

Synchronization 51

Waiting on Condition Variables

e when a blocked thread is unblocked @ygnal orbr oadcast), it
reacquires the lock before returning from thei t call

e athread is in the critical section when it calai t , and it will be in the critical
section whemai t returns. However, in between the call and the return, while
the caller is blocked, the caller is out of the critical sextiand other threads
may enter.

¢ In particular, the thread that cabs gnal (or br oadcast) to wake up the
waiting thread will itself be in the critical section whersignals. The waiting
thread will have to wait (at least) until the signaller redes the lock before it
can unblock and return from thvaai t call.

This describes Mesa-style condition variables, which aedun OS/161.
There are alternative condition variable semantics (Heameantics), which
differ from the semantics described here.

CS350 Operating Systems Winter 2014

Synchronization 52

Bounded Buffer Producer Using Condition Variables

int volatile count = 0; /* must initially be 0 */
struct | ock *nutex; /= for mutual exclusion */
struct cv *notfull, =*notenpty; /* condition variables */

/= Initialization Note: the |lock and cv’'s nust be created
* using |ock_create() and cv.create() before Produce()
* and Consune() are called =/

Produce(itenlype item {
| ock_acqui r e(mut ex) ;
while (count == N) {
cvwait(notfull, nutex);
}

add itemto buffer (call 1ist_append())
count = count + 1,

cv_si gnal (notenpty, nutex);

| ock_rel ease(mut ex) ;

}

CS350 Operating Systems Winter 2014

Synchronization 53

Bounded Buffer Consumer Using Condition Variables

i tenifype Consume() {
| ock_acqui r e(mut ex) ;
while (count == 0) {
cv_wai t (notenpty, nmnutex);

}

renove itemfrombuffer (call list_renovefront())
count = count - 1,

cv.signal (notfull, nutex);

| ock_r el ease(nmut ex) ;
return(item;

Both Pr oduce() andConsune() callcv_wait () inside of awhi | e

loop. Why?
CS350 Operating Systems Winter 2014
Synchronization 54

Monitors

Condition variables are derived fromonitors. A monitor is a programming
language construct that provides synchronized accessitedkata. Monitors
have appeared in many languages, e.g., Ada, Mesa, Java.

a monitor is essentially an object with special concurresayantics

it is an object, meaning
— it has data elements

— the data elements are encapsulated by a set of methods, avkitie only
functions that directly access the object’s data elements

only one monitor method may be active at a time, i.e., the monitor oesh
(together) form a critical section

— if two threads attempt to execute methods at the same tineeywdinbe
blocked until the other finishes

e inside a monitor, condition variables can be declared ard us

CS350 Operating Systems Winter 2014

Synchronization 55

Monitors in 0S/161

e The C language, in which OS/161 is written, does not supportitors.

e However, programming convention and OS/161 locks and tiomdiariables
can be used to provide monitor-like behavior for sharedddedtata structures:
— define a C structure to implement the object’s data elements

— define a set of C functions to manipulate that structure élaes the object
“methods”)

— ensure that only those functions directly manipulate thecsire
— create an OS/161 lock to enforce mutual exclusion

— ensure that each access method acquires the lock whertstatarreleases
the lock when it finishes

— if desired, define one or more condition variables and usa thighin the
methods.

CS350 Operating Systems Winter 2014

Synchronization 56

Deadlocks

e Suppose there are two threads and two lotk& k A andl ockB, both initially
unlocked.

e Suppose the following sequence of events occurs
1. Thread 1 doesock_acqui re(| ockA).
2. Thread 2 doesock_acqui re(l ockB).

3. Thread 1 doekock_acqui r e(| ockB) and blocks, becauseockB is
held by thread 2.

4. Thread 2 doesock_acqui r e(| ockA) and blocks, becaudeockAis
held by thread 1.

These two threads adeadlocked - neither thread can make progress. Wait-
ing will not resolve the deadlock. The threads are permansthick.

CS350 Operating Systems Winter 2014

Synchronization 57

Deadlocks (Another Simple Example)

e Suppose a machine hé$ MB of memory. The following sequence of events
occurs.

1. ThreadA starts, request¥) MB of memory.
2. ThreadB starts, also request® MB of memory.

3. ThreadA requests an addition&8MB of memory. The kernel blocks thread
A since there is only MB of available memory.

4. ThreadB requests an additionalMB of memory. The kernel blocks thread
B since there is not enough memory available.

These two threads are deadlocked.

CS350 Operating Systems Winter 2014

Synchronization 58

Resource Allocation Graph (Example)

R1 R2 R3

VARV
YA\

resource requeé\ /r’esource allocation

R4 R5

Is there a deadlock in this system?

CS350 Operating Systems Winter 2014

Synchronization

59

Resource Allocation Graph (Another Example)

R1 R3

o ece oo

W Y

T1 T2 T3

\ /
e || 4

R4 R5

Is there a deadlock in this system?

CS350 Operating Systems

Winter 2014

Synchronization

60

Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currerdly h
resources allocated to it. A thread may hold several ressutuut to do so it

must make a single request for all of them.

Preemption: take resources away from a thread and give them to anothelfys
not possible). Thread is restarted when it can acquire aliébources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require tbht ea
thread acquire resources in increasing resource type.drdat is, a thread may
make no requests for resources of type less than or equélitas holding

resources of typé

CS350 Operating Systems

Winter 2014

Synchronization 61

Deadlock Detection and Recovery

e main idea: the system maintains the resource allocatiqrhgrad tests it to
determine whether there is a deadlock. If there is, the systest recover from
the deadlock situation.

e deadlock recovery is usually accomplished by terminatimg @ more of the
threads involved in the deadlock

e when to test for deadlocks? Can test on every blocked resoaquest, or can
simply test periodically. Deadlocks persist, so perioditedtion will not
“miss” them.

Deadlock detection and deadlock recovery are both costhys approach
makes sense only if deadlocks are expected to be infrequent.

CS350 Operating Systems Winter 2014

Synchronization 62

Detecting Deadlock in a Resource Allocation Graph

e System State Notation:
— D,: demand vector for thredf;
— A;: current allocation vector for thread

— U: unallocated (available) resource vector

¢ Additional Algorithm Notation:
— R: scratch resource vector
— f;: algorithm is finished with thread;? (boolean)

CS350 Operating Systems Winter 2014

Synchronization 63

Detecting Deadlock (cont’d)

[+ initialization */
R = U
for all 4, f;,= false
[+ can each thread finish? */
while 34 (- fi A (Di < R)){
R = R + A
fi = true
}
[+ if not, there is a deadl ock =*/
if 3¢ (- f;) then report deadl ock
el se report no deadl ock

CS350 Operating Systems Winter 2014

Synchronization 64

Deadlock Detection, Positive Example

0.1.0.0.0 R1 R2 R3

Dy = ()

Ds = (0,0,0,0,1) ® athe oo
e D3 =(0,1,0,0,0) x \ \

A =() T

Ay = ()

Az = ()

1,0,0,0,0 1 @ 3

0,2,0,0,0 resource requeé\ %esource allocation

0,1,1,0,1
)))) . ‘
U =(0,0,1,1,0) - —

The deadlock detection algorithm will terminate with== f, == f3 ==
f al se, so this system is deadlocked.

CS350 Operating Systems Winter 2014

Synchronization

65

Deadlock Detection, Negative Example

R1

R3

ﬂ

eoe o

e D, =(0,1,0,0,0)
e Dy =(1,0,0,0,0)
e D3 =(0,0,0,0,0)
e A; =(1,0,0,1,0)
o Ay =1(0,2,1,0,0)
o A3 =(0,1,1,0,1)
e U =(0,0,0,0,0)

\

T1

\

N

T2 T3

/

o

.

R4

R5

This system is not in deadlock. It is possible that the thseadl run to

completion in the orders, Ty, Ts.

CS350 Operating Systems

Winter 2014

