
Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on uniprocessors.

CS350 Operating Systems Winter 2014

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a varietyof ways:

– Threads share access, through the operating system, to system devices (more

on this later. . .)

– Threads may share access to program data, e.g., global variables.

• A common synchronization problem is to enforcemutual exclusion, which

means making sure that only one thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed iscalled acritical

section.

CS350 Operating Systems Winter 2014

Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

} }

If one thread executesadd and another executessub what is the value of

total when they have finished?

CS350 Operating Systems Winter 2014

Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

CS350 Operating Systems Winter 2014

Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

<INTERRUPT>

sw R9 0(R8) total=1

One possible order of execution.

CS350 Operating Systems Winter 2014

Synchronization 6

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

<INTERRUPT>

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

sub R11 1 R11=-1

sw R11 0(R10) total=-1

Another possible order of execution. Many interleavings ofinstructions are

possible. Synchronization is required to ensure a correct ordering.

CS350 Operating Systems Winter 2014

Synchronization 7

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

add R9 1 sub R11 1

} }

sw R9 0(R8) sw R11 0(R10)

} }

Without volatile the compiler could optimize the code. If one thread executes

add and another executessub, what is the value oftotal when they have

finished?

CS350 Operating Systems Winter 2014

Synchronization 8

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

add R9 N sub R11 N

sw R9 0(R8) sw R11 0(R10)

} }

The compiler could aggressively optimize the code., Volatile tells the com-

piler that the object may change for reasons which cannot be determined

from the local code (e.g., due to interaction with a device orbecause of an-

other thread).

CS350 Operating Systems Winter 2014

Synchronization 9

The use of volatile

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

The volatile declaration forces the compiler to load and store the value on

every use. Using volatile is necessary but not sufficient forcorrect behaviour.

Mutual exclusion is also required to ensure a correct ordering of instructions.

CS350 Operating Systems Winter 2014

Synchronization 10

Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Allow one thread to execute and make others wait

total++; total--;

Permit one waiting thread to continue execution

} }

} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Winter 2014

Synchronization 11

Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;
list element *element;
assert(!is empty(lp));
element = lp->first;
num = lp->first->item;
if (lp->first == lp->last) {

lp->first = lp->last = NULL;
} else {

lp->first = element->next;
}
lp->num_in_list--;
free(element);
return num;

}

Thelist remove front function is a critical section. It may not work

properly if two threads call it at the same time on the samelist. (Why?)

CS350 Operating Systems Winter 2014

Synchronization 12

Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

The list append function is part of the same critical section as

list remove front. It may not work properly if two threads call

it at the same time, or if a thread calls it while another has called

list remove front

CS350 Operating Systems Winter 2014

Synchronization 13

Enforcing Mutual Exclusion

• mutual exclusion algorithms ensure that only one thread at atime executes the

code in a critical section

• several techniques for enforcing mutual exclusion

– exploit special hardware-specific machine instructions, e.g., test-and-set,

compare-and-swap, or load-link / store-conditional, that are intended for

this purpose

– use mutual exclusion algorithms, e.g.,Peterson’s algorithm, that rely only

on atomic loads and stores

– control interrupts to ensure that threads are not preemptedwhile they are

executing a critical section

CS350 Operating Systems Winter 2014

Synchronization 14

Disabling Interrupts

• On a uniprocessor, only one thread at a time is actually running.

• If the running thread is executing a critical section, mutual exclusion may be

violated if

1. the running thread is preempted (or voluntarily yields) while it is in the

critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters

the same critical section that the preempted thread was in

• Since preemption is caused by timer interrupts, mutual exclusion can be

enforced by disabling timer interrupts before a thread enters the critical section,

and re-enabling them when the thread leaves the critical section.

CS350 Operating Systems Winter 2014

Synchronization 15

Interrupts in OS/161

This is one way that the OS/161 kernel enforces mutual exclusion on a single

processor. There is a simple interface

• spl0() sets IPL to 0, enabling all interrupts.

• splhigh() sets IPL to the highest value, disabling all interrupts.

• splx(s) sets IPL to S, enabling whatever state S represents.

These are used by splx() and by the spinlock code.

• splraise(int oldipl, int newipl)

• spllower(int oldipl, int newipl)

• For splraise,NEWIPL > OLDIPL, and for spllower,NEWIPL < OLDIPL.

Seekern/include/spl.h andkern/thread/spl.c

CS350 Operating Systems Winter 2014

Synchronization 16

Pros and Cons of Disabling Interrupts

• advantages:

– does not require any hardware-specific synchronization instructions

– works for any number of concurrent threads

• disadvantages:

– indiscriminate: prevents all preemption, not just preemption that would

threaten the critical section

– ignoring timer interrupts has side effects, e.g., kernel unaware of passage of

time. (Worse, OS/161’ssplhigh() disablesall interrupts, not just timer

interrupts.) Keep critical sectionsshort to minimize these problems.

– will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Winter 2014

Synchronization 17

Peterson’s Mutual Exclusion Algorithm

/* shared variables */

/* note: one flag array and turn variable */

/* for each critical section */

boolean volatile flag[2]; /* shared, initially false */

int volatile turn; /* shared */

flag[i] = true; /* for one thread, i = 0 and j = 1 */

turn = j; /* for the other, i = 1 and j = 0 */

while (flag[j] && turn == j) { } /* busy wait */

critical section /* e.g., call to list remove front */

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but works only for two

threads. (Why?)

CS350 Operating Systems Winter 2014

Synchronization 18

Hardware-Specific Synchronization Instructions

• a test-and-set instructionatomically sets the value of a specified memory

location and either

– places that memory location’sold value into a register, or

– checks a condition against the memory location’s old value and records the

result of the check in a register

• for presentation purposes, we will abstract such an instruction as a function

TestAndSet(address,value), which takes a memory location

(address) and a value as parameters. It atomically storesvalue at the

memory location specified byaddress and returns the previous value stored

at that address

• Often only two values are used 0 and 1 so thevalue parameter is not used and

a value of 1 is implied (e.g., in OS/161)

CS350 Operating Systems Winter 2014

Synchronization 19

A Spin Lock Using Test-And-Set in OS/161

• a test-and-set instruction can be used to enforce mutual exclusion

• for each critical section, define a shared variable

volatile spinlock data t lk lock; /* initially 0 */

We will use the lock variable to keep track of whether there isa thread in the

critical section, in which case the value oflk lock will be 1

• before a thread can enter the critical section, it does the following:

while (spinlock data testandset(&lk->lk lock) != 0) {

/* busy wait */

}

• if lk lock == 0 then it is set to 1 and the thread enters the critical section

• when the thread leaves the critical section, it does:

spinlock data set(&lk->lk lock, 0);

CS350 Operating Systems Winter 2014

Synchronization 20

A Spin Lock Using Test-And-Set

• this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known as aspin lock, since a thread “spins” in

the while loop until the critical section is free. Spin locksare widely used on

multiprocessors.

CS350 Operating Systems Winter 2014

Synchronization 21

Spinlocks in OS/161

struct spinlock {

volatile spinlock_data_t lk_lock; /* word for spin */

struct cpu *lk_holder; /* CPU holding this lock */

};

void spinlock_init(struct spinlock *lk);

void spinlock_cleanup(struct spinlock *lk);

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

bool spinlock_do_i_hold(struct spinlock *lk);

CS350 Operating Systems Winter 2014

Synchronization 22

Spinlocks in OS/161

spinlock_init(struct spinlock *lk)
{

spinlock_data_set(&lk->lk_lock, 0);
lk->lk_holder = NULL;

}

void spinlock_cleanup(struct spinlock *lk)
{

KASSERT(lk->lk_holder == NULL);
KASSERT(spinlock_data_get(&lk->lk_lock) == 0);

}

void spinlock_data_set(volatile spinlock_data_t *sd,
unsigned val)

{

*sd = val;
}

CS350 Operating Systems Winter 2014

Synchronization 23

Spinlocks in OS/161

void spinlock_acquire(struct spinlock *lk)

{

struct cpu *mycpu;

splraise(IPL_NONE, IPL_HIGH);

/* this must work before curcpu initialization */

if (CURCPU_EXISTS()) {

mycpu = curcpu->c_self;

if (lk->lk_holder == mycpu) {

panic("Deadlock on spinlock %p\n", lk);

}

} else {

mycpu = NULL;

}

CS350 Operating Systems Winter 2014

Synchronization 24

Spinlocks in OS/161

while (1) {

/* Do test-test-and-set to reduce bus contention */

if (spinlock_data_get(&lk->lk_lock) != 0) {

continue;

}

if (spinlock_data_testandset(&lk->lk_lock) != 0) {

continue;

}

break;

}

lk->lk_holder = mycpu;

}

CS350 Operating Systems Winter 2014

Synchronization 25

Spinlocks in OS/161

void spinlock_release(struct spinlock *lk)

{

/* this must work before curcpu initialization */

if (CURCPU_EXISTS()) {

KASSERT(lk->lk_holder == curcpu->c_self);

}

lk->lk_holder = NULL;

spinlock_data_set(&lk->lk_lock, 0);

spllower(IPL_HIGH, IPL_NONE);

}

CS350 Operating Systems Winter 2014

Synchronization 26

Load-Link / Store-Conditional

Load-link returns the current value of a memory location, while a subsequent

store-conditional to the same memory location will store a new value only if no

updates have occurred to that location since the load-link.

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

/* Test-and-set using LL/SC.

* Load the existing value into X, and use Y to store 1.

* After the SC, Y contains 1 if the store succeeded,

* 0 if it failed. On failure, return 1 to pretend

* that the spinlock was already held.

*/

y = 1;

CS350 Operating Systems Winter 2014

Synchronization 27

Load-Link / Store-Conditional

__asm volatile(

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) {

return 1;

}

return x;

}

CS350 Operating Systems Winter 2014

Synchronization 28

Pros and Cons of Spinlocks

• Pros:

– can be efficient for short critical sections

– using hardware specific synchronization instructions means it works on

multiprocessors

• Cons:

– CPU is busy (nothing else runs) while waiting for lock

– starvation is possible

If critical section is short prefer spinlock.

If critical section is long prefer blocking lock.

Hybrid locks will spin for a period of time before blocking.

Question: How to determine how long to spin for hybrid lock?

CS350 Operating Systems Winter 2014

Synchronization 29

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than0, decrement the value. Otherwise,

wait until the value is greater than0 and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores:can take on any non-negative value

binary semaphores: take on only the values0 and1. (V on a binary

semaphore with value1 has no effect.)

By definition, theP andV operations of a semaphore areatomic.

CS350 Operating Systems Winter 2014

Synchronization 30

A Simple Example using Semaphores

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }

} }

What type of semaphore can be used forsem?

CS350 Operating Systems Winter 2014

Synchronization 31

OS/161 Semaphores

struct semaphore {

char *sem name;

struct wchan *sem wchan;

struct spinlock sem lock;

volatile int sem count;

};

struct semaphore *sem create(const char *name,

int initial count);

void P(struct semaphore *s);

void V(struct semaphore *s);

void sem destroy(struct semaphore *s);

seekern/include/synch.h andkern/thread/synch.c

CS350 Operating Systems Winter 2014

Synchronization 32

Mutual Exclusion Using a Semaphore

struct semaphore *s;

s = sem create("MySem1", 1); /* initial value is 1 */

P(s); /* do this before entering critical section */

critical section /* e.g., call to list remove front */

V(s); /* do this after leaving critical section */

CS350 Operating Systems Winter 2014

Synchronization 33

OS/161 Semaphores:P() from kern/thread/synch.c

P(struct semaphore *sem)

{

KASSERT(sem != NULL);

KASSERT(curthread->t in interrupt == false);

spinlock acquire(&sem->sem lock);

while (sem->sem count == 0) {

/* Note: we don’t maintain strict FIFO ordering */

wchan lock(sem->sem wchan);

spinlock release(&sem->sem lock);

wchan sleep(sem->sem wchan);

spinlock acquire(&sem->sem lock);

}

KASSERT(sem->sem count > 0);

sem->sem count--;

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Winter 2014

Synchronization 34

OS/161 Semaphores:V() from kern/thread/synch.c

V(struct semaphore *sem)

{

KASSERT(sem != NULL);

spinlock acquire(&sem->sem lock);

sem->sem count++;

KASSERT(sem->sem count > 0);

wchan wakeone(sem->sem wchan);

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Winter 2014

Synchronization 35

Thread Blocking

• Sometimes a thread will need to wait for an event. One exampleis on the

previous slide: a thread that attempts aP() operation on a zero-valued

semaphore must wait until the semaphore’s value becomes positive.

• other examples that we will see later on:

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• In these circumstances, we do not want the thread to run, since it cannot do

anything useful.

• To handle this, the thread scheduler canblock threads.

CS350 Operating Systems Winter 2014

Synchronization 36

Thread Blocking in OS/161

• OS/161 thread library functions for blocking and unblocking threads:

– void wchan lock(struct wchan *wc);

– void wchan unlock(struct wchan *wc);

∗ locks/unlocks the wait channelwc

– void wchan sleep(struct wchan *wc);

∗ blocks calling thread on wait channelwc

∗ channel must be locked, will be unlocked upon return

– void wchan wakeall(struct wchan *wc);

∗ unblock all threads sleeping on wait channelwc

– void wchan wakeone(struct wchan *wc);

∗ unblock one thread sleeping on wait channelwc

Note: current implementation is FIFO but not promised by theinterface

CS350 Operating Systems Winter 2014

Synchronization 37

Thread Blocking in OS/161

• wchan sleep() is much likethread yield(). The calling thread is

voluntarily giving up the CPU, so the scheduler chooses a newthread to run, the

state of the running thread is saved and the new thread is dispatched. However:

– after athread yield(), the calling thread isready to run again as soon

as it is chosen by the scheduler

– after awchan sleep(), the calling thread isblocked, and must not be

scheduled to run again until after it has been explicitly unblocked by a call

to wchan wakeone() or wchan wakeall().

CS350 Operating Systems Winter 2014

Synchronization 38

Thread States

• a very simple thread state transition diagram

ready

blocked

dispatch

need resource or eventgot resource or event

running

quantum expires
or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Winter 2014

Synchronization 39

Producer/Consumer Synchronization

• suppose we have threads that add items to a list (producers) and threads that

remove items from the list (consumers)

• suppose we want to ensure that consumers do not consume if thelist is empty -

instead they must wait until the list has something in it

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization, as shown on the next

slide

CS350 Operating Systems Winter 2014

Synchronization 40

Producer/Consumer Synchronization using Semaphores

struct semaphore *s;

s = sem create("Items", 0); /* initial value is 0 */

Producer’s Pseudo-code:

add item to the list (call list append())

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from the list (call list remove front())

The Items semaphore does not enforce mutual exclusion on thelist. If we

want mutual exclusion, we can also use semaphores to enforceit. (How?)

CS350 Operating Systems Winter 2014

Synchronization 41

Bounded Buffer Producer/Consumer Synchronization

• suppose we add one more requirement: the number of items in the list should

not exceedN

• producers that try to add items when the list is full should bemade to wait until

the list is no longer full

• We can use an additional semaphore to enforce this new constraint:

– semaphoreFull is used to count the number of full (occupied) entries in

the list (to ensure nothing is produced if the list is full)

– semaphoreEmpty is used to count the number of empty (unoccupied)

entries in the list (to ensure nothing is consumed if the listis empty)

struct semaphore *full;

struct semaphore *empty;

full = sem create("Full", 0); /* initial value = 0 */

empty = sem create("Empty", N); /* initial value = N */

CS350 Operating Systems Winter 2014

Synchronization 42

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo-code:

P(empty);

add item to the list (call list append())

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from the list (call list remove front())

V(empty);

CS350 Operating Systems Winter 2014

Synchronization 43

OS/161 Locks

• OS/161 also uses a synchronization primitive called alock. Locks are intended

to be used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• A lock is similar to a binary semaphore with an initial value of 1. However,

locks also enforce an additional constraint: the thread that releases a lock must

be the same thread that most recently acquired it.

• The system enforces this additional constraint to help ensure that locks are used

as intended.

CS350 Operating Systems Winter 2014

Synchronization 44

Reader/Writer Locks

• Reader/Writer (or a shared) locks can be acquired in either of read (shared) or

write (exclusive) mode

• In OS/161 reader/writer locks might look like this:

struct rwlock *rwlock = rw lock create("RWLock");

rwlock aquire(rwlock, READ_MODE);

can only read shared resources

/* access is shared by readers */

rwlock release(rwlock);

rwlock aquire(rwlock, WRITE_MODE);

can read and write shared resources

/* access is exclusive to only one writer */

rwlock release(rwlock);

CS350 Operating Systems Winter 2014

Synchronization 45

Critical Section Requirements

• Mutual exclusion: While one thread is executing in the critical section no other

thread can execute in that critical section.

• Progress: The thread in the critical section will eventually leave the critical

section.

• Bounded waiting: Any thread will wait for a bounded amount of time before it

is able to enter the critical section.

CS350 Operating Systems Winter 2014

Synchronization 46

Performance Issues

• Overhead: the memory and CPU resources used when acquiring and releasing

access to critical sections

• Contention: competition for access to the critical section

• Granularity : the amount of code executed while in a critical section

Why are these important issues?

CS350 Operating Systems Winter 2014

Synchronization 47

Lock Overhead, Contention and Granularity (Option 1)

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P / Acquire P / Acquire

total++; total--;

V / Release V / Release

} }

} }

Should one useP()/V(), spinlock acquire()/spinlock release()

or lock acquire()/lock release?

CS350 Operating Systems Winter 2014

Synchronization 48

Lock Overhead, Contention and Granularity (Option 2)

void add() { void sub() {

int i; int i;

P / Acquire P / Acquire

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

V / Release V / Release

} }

Which option is better Option 1 (previous slide) or 2 (this slide)? Why?

Does the choice of where to do synchronization influence the choice of which

mechanism to use for synchronization?

CS350 Operating Systems Winter 2014

Synchronization 49

Condition Variables

• OS/161 supports another common synchronization primitive: condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only usedfrom within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associated

with the condition variable. Once the thread is unblocked itreacquires the

lock.

signal: If threads are blocked on the signaled condition variable, then one of

those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the

condition variable.

CS350 Operating Systems Winter 2014

Synchronization 50

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the twoconditions are:

– count > 0 (condition variablenotempty)

– count < N (condition variablenotfull)

• when a condition is not true, a thread canwait on the corresponding condition

variable until it becomes true

• when a thread detects that a condition is true, it usessignal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that has no

waiters hasno effect. Signals do not accumulate.

CS350 Operating Systems Winter 2014

Synchronization 51

Waiting on Condition Variables

• when a blocked thread is unblocked (bysignal or broadcast), it

reacquires the lock before returning from thewait call

• a thread is in the critical section when it callswait, and it will be in the critical

section whenwait returns. However, in between the call and the return, while

the caller is blocked, the caller is out of the critical section, and other threads

may enter.

• In particular, the thread that callssignal (or broadcast) to wake up the

waiting thread will itself be in the critical section when itsignals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from thewait call.

This describes Mesa-style condition variables, which are used in OS/161.

There are alternative condition variable semantics (Hoaresemantics), which

differ from the semantics described here.

CS350 Operating Systems Winter 2014

Synchronization 52

Bounded Buffer Producer Using Condition Variables

int volatile count = 0; /* must initially be 0 */
struct lock *mutex; /* for mutual exclusion */
struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);
while (count == N) {

cv wait(notfull, mutex);
}
add item to buffer (call list append())
count = count + 1;
cv signal(notempty, mutex);
lock release(mutex);

}

CS350 Operating Systems Winter 2014

Synchronization 53

Bounded Buffer Consumer Using Condition Variables

itemType Consume() {

lock acquire(mutex);

while (count == 0) {

cv wait(notempty, mutex);

}

remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex);

lock release(mutex);

return(item);

}

Both Produce() andConsume() call cv wait() inside of awhile

loop. Why?

CS350 Operating Systems Winter 2014

Synchronization 54

Monitors

• Condition variables are derived frommonitors. A monitor is a programming

language construct that provides synchronized access to shared data. Monitors

have appeared in many languages, e.g., Ada, Mesa, Java.

• a monitor is essentially an object with special concurrencysemantics

• it is an object, meaning

– it has data elements

– the data elements are encapsulated by a set of methods, whichare the only

functions that directly access the object’s data elements

• only one monitor method may be active at a time, i.e., the monitor methods

(together) form a critical section

– if two threads attempt to execute methods at the same time, one will be

blocked until the other finishes

• inside a monitor, condition variables can be declared and used

CS350 Operating Systems Winter 2014

Synchronization 55

Monitors in OS/161

• The C language, in which OS/161 is written, does not support monitors.

• However, programming convention and OS/161 locks and condition variables

can be used to provide monitor-like behavior for shared kernel data structures:

– define a C structure to implement the object’s data elements

– define a set of C functions to manipulate that structure (these are the object

“methods”)

– ensure that only those functions directly manipulate the structure

– create an OS/161 lock to enforce mutual exclusion

– ensure that each access method acquires the lock when it starts and releases

the lock when it finishes

– if desired, define one or more condition variables and use them within the

methods.

CS350 Operating Systems Winter 2014

Synchronization 56

Deadlocks

• Suppose there are two threads and two locks,lockA andlockB, both initially

unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 doeslock acquire(lockA).

2. Thread 2 doeslock acquire(lockB).

3. Thread 1 doeslock acquire(lockB) and blocks, becauselockB is

held by thread 2.

4. Thread 2 doeslock acquire(lockA) and blocks, becauselockA is

held by thread 1.

These two threads aredeadlocked - neither thread can make progress. Wait-

ing will not resolve the deadlock. The threads are permanently stuck.

CS350 Operating Systems Winter 2014

Synchronization 57

Deadlocks (Another Simple Example)

• Suppose a machine has64 MB of memory. The following sequence of events

occurs.

1. ThreadA starts, requests30 MB of memory.

2. ThreadB starts, also requests30 MB of memory.

3. ThreadA requests an additional8 MB of memory. The kernel blocks thread

A since there is only4 MB of available memory.

4. ThreadB requests an additional5 MB of memory. The kernel blocks thread

B since there is not enough memory available.

These two threads are deadlocked.

CS350 Operating Systems Winter 2014

Synchronization 58

Resource Allocation Graph (Example)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

Is there a deadlock in this system?

CS350 Operating Systems Winter 2014

Synchronization 59

Resource Allocation Graph (Another Example)

R1 R2 R3

R4 R5

T1 T2 T3

Is there a deadlock in this system?

CS350 Operating Systems Winter 2014

Synchronization 60

Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has

resources allocated to it. A thread may hold several resources, but to do so it

must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually

not possible). Thread is restarted when it can acquire all the resources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require that each

thread acquire resources in increasing resource type order. That is, a thread may

make no requests for resources of type less than or equal toi if it is holding

resources of typei.

CS350 Operating Systems Winter 2014

Synchronization 61

Deadlock Detection and Recovery

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover from

the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

threads involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can

simply test periodically. Deadlocks persist, so periodic detection will not

“miss” them.

Deadlock detection and deadlock recovery are both costly. This approach

makes sense only if deadlocks are expected to be infrequent.

CS350 Operating Systems Winter 2014

Synchronization 62

Detecting Deadlock in a Resource Allocation Graph

• System State Notation:

– Di: demand vector for threadTi

– Ai: current allocation vector for threadTi

– U : unallocated (available) resource vector

• Additional Algorithm Notation:

– R: scratch resource vector

– fi: algorithm is finished with threadTi? (boolean)

CS350 Operating Systems Winter 2014

Synchronization 63

Detecting Deadlock (cont’d)

/* initialization */

R = U

for all i, fi = false

/* can each thread finish? */

while ∃ i (¬ fi ∧ (Di ≤ R)) {

R = R + Ai

fi = true

}

/* if not, there is a deadlock */

if ∃ i (¬ fi) then report deadlock

else report no deadlock

CS350 Operating Systems Winter 2014

Synchronization 64

Deadlock Detection, Positive Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (0, 0, 0, 0, 1)

• D3 = (0, 1, 0, 0, 0)

• A1 = (1, 0, 0, 0, 0)

• A2 = (0, 2, 0, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 1, 1, 0)

R1 R2 R3

R4 R5

T1 T2 T3

resource request resource allocation

The deadlock detection algorithm will terminate withf1 == f2 == f3 ==

false, so this system is deadlocked.

CS350 Operating Systems Winter 2014

Synchronization 65

Deadlock Detection, Negative Example

• D1 = (0, 1, 0, 0, 0)

• D2 = (1, 0, 0, 0, 0)

• D3 = (0, 0, 0, 0, 0)

• A1 = (1, 0, 0, 1, 0)

• A2 = (0, 2, 1, 0, 0)

• A3 = (0, 1, 1, 0, 1)

• U = (0, 0, 0, 0, 0)

R1 R2 R3

R4 R5

T1 T2 T3

This system is not in deadlock. It is possible that the threads will run to

completion in the orderT3, T1, T2.

CS350 Operating Systems Winter 2014

