
Threads and Concurrency 1

Review: Program Execution

• Registers

– program counter, stack pointer,. . .

• Memory

– program code

– program data

– program stack containing procedure activation records

• CPU

– fetches and executes instructions

CS350 Operating Systems Winter 2014

Threads and Concurrency 2

Review: MIPS Register Usage

R0, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assembler

R2, v0 = ## return value / system call number

R3, v1 = ## return value

R4, a0 = ## 1st argument (to subroutine)

R5, a1 = ## 2nd argument

R6, a2 = ## 3rd argument

R7, a3 = ## 4th argument

CS350 Operating Systems Winter 2014

Threads and Concurrency 3

Review: MIPS Register Usage

R08-R15, t0-t7 = ## temps (not preserved by subroutines)

R24-R25, t8-t9 = ## temps (not preserved by subroutines)

can be used without saving

R16-R23, s0-s7 = ## preserved by subroutines

save before using,

restore before return

R26-27, k0-k1 = ## reserved for interrupt handler

R28, gp = ## global pointer

(for easy access to some variables)

R29, sp = ## stack pointer

R30, s8/fp = ## 9th subroutine reg / frame pointer

R31, ra = ## return addr (used by jal)

CS350 Operating Systems Winter 2014

Threads and Concurrency 4

What is a Thread?

• A thread represents the control state of an executing program.

• A thread has an associatedcontext (or state), which consists of

– the processor’s CPU state, including the values of the program counter (PC),

the stack pointer, other registers, and the execution mode

(privileged/non-privileged)

– a stack, which is located in the address space of the thread’sprocess

Imagine that you would like to suspend the program execution, and resume

it again later. Think of the thread context as the information you would

need in order to restart program execution from where it leftoff when it was

suspended.

CS350 Operating Systems Winter 2014

Threads and Concurrency 5

Thread Context

memory

CPU registers

codedatastack

thread context

CS350 Operating Systems Winter 2014

Threads and Concurrency 6

Concurrent Threads

• more than one thread may exist simultaneously (why might this be a good

idea?)

• each thread has its own context, though they may share accessto program code

and data

• on a uniprocessor (one CPU), at most one thread is actually executing at any

time. The others are paused, waiting to resume execution.

• on a multiprocessor, multiple threads may execute at the same time, but if there

are more threads than processors then some threads will be paused and waiting

CS350 Operating Systems Winter 2014

Threads and Concurrency 7

Example: Concurrent Mouse Simulations

static void mouse_simulation(void * unusedpointer,
unsigned long mousenumber)

{
int i; unsigned int bowl;

for(i=0;i<NumLoops;i++) {
/* for now, this mouse chooses a random bowl from

* which to eat, and it is not synchronized with

* other cats and mice

*/
/* legal bowl numbers range from 1 to NumBowls */
bowl = ((unsigned int)random() % NumBowls) + 1;
mouse_eat(bowl);

}

/* indicate that this mouse is finished */
V(CatMouseWait);

}

CS350 Operating Systems Winter 2014

Threads and Concurrency 8

Implementing Threads

• a thread library is responsibile for implementing threads

• the thread library stores threads’ contexts (or pointers tothe threads’ contexts)

when they are not running

• the data structure used by the thread library to store a thread context is

sometimes called athread control block

In the OS/161 kernel’s thread implementation, thread contexts are stored in

thread structures.

CS350 Operating Systems Winter 2014

Threads and Concurrency 9

Thread Library and Two Threads

memory

CPU registers

codedatastack 1 stack 2

thread library

thread 2 context (waiting thread)

thread 1 context (running thread)

CS350 Operating Systems Winter 2014

Threads and Concurrency 10

The OS/161thread Structure

/* see kern/include/thread.h */

struct thread {

char *t_name; /* Name of this thread */

const char *t_wchan_name; /* Wait channel name, if sleeping */

threadstate_t t_state; /* State this thread is in */

/* Thread subsystem internal fields. */

struct thread_machdep t_machdep; /* Any machine-dependent goo */

struct threadlistnode t_listnode; /* run/sleep/zombie lists */

void *t_stack; /* Kernel-level stack */

struct switchframe *t_context; /* Register context (on stack) */

struct cpu *t_cpu; /* CPU thread runs on */

struct proc *t_proc; /* Process thread belongs to */

...

CS350 Operating Systems Winter 2014

Threads and Concurrency 11

Thread Library and Two Threads (OS/161)

memory

CPU registers

codedatastack 1 stack 2

thread library

thread 1 context (running thread)

structuresthread

CS350 Operating Systems Winter 2014

Threads and Concurrency 12

Context Switch, Scheduling, and Dispatching

• the act of pausing the execution of one thread and resuming the execution of
another is called a(thread) context switch

• what happens during a context switch?

1. decide which thread will run next

2. save the context of the currently running thread

3. restore the context of the thread that is to run next

• the act of saving the context of the current thread and installing the context of
the next thread to run is calleddispatching (the next thread)

• sounds simple, but. . .

– architecture-specific implementation

– thread must save/restore its context carefully, since thread execution
continuously changes the context

– can be tricky to understand (at what point does a thread actually stop? what
is it executing when it resumes?)

CS350 Operating Systems Winter 2014

Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:
/* a0: address of switchframe pointer of old thread. */
/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

CS350 Operating Systems Winter 2014

Threads and Concurrency 14

Dispatching on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */
lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 40 /* in delay slot */
.end switchframe_switch

CS350 Operating Systems Winter 2014

Threads and Concurrency 15

Dispatching on the MIPS (Notes)

• Not all of the registers are saved during a context switch

• This is because the context switch code is reached via a call to

thread switch and by convention on the MIPS not all of the registers are

required to be preserved across subroutine calls

• thus, after a call toswitchframe switch returns, the caller

(thread switch) does not expect all registers to have the same values as

they had before the call - to save time, those registers are not preserved by the

switch

• if the caller wants to reuse those registers it must save and restore them

CS350 Operating Systems Winter 2014

Threads and Concurrency 16

Thread Library Interface

• the thread library interface allows program code to manipulate threads

• one key thread library interface function isYield()

• Yield() causes the calling thread to stop and wait, and causes the thread library

to choose some other waiting thread to run in its place. In other words, Yield()

causes a context switch.

• in addition toYield(), thread libraries typically provide other thread-related

services:

– create new thread

– end (and destroy) a thread

– cause a thread toblock (to be discussed later)

CS350 Operating Systems Winter 2014

Threads and Concurrency 17

The OS/161 Thread Interface (incomplete)

/* see kern/include/thread.h */

int thread_fork(const char *name, struct proc *proc,

void (*func)(void *, unsigned long),

void *data1, unsigned long data2);

/* Cause the current thread to exit. */

/* Interrupts need not be disabled. */

void thread_exit(void);

/* Let another thread run, caller stays runnable. */

void thread_yield(void);

/* Potentially migrate ready threads to other CPUs */

void thread_consider_migration(void);

CS350 Operating Systems Winter 2014

Threads and Concurrency 18

The OS/161 Thread / Wait Channel Interface (incomplete)

/* see kern/include/wchan.h */

void wchan_lock(struct wchan *wc);

void wchan_unlock(struct wchan *wc);

/* Sleep on a wait channel until awakened by someone else

* Channel must be locked, and will have been *unlocked*

* upon return. */

void wchan_sleep(struct wchan *wc);

/* Wake up one/all threads, sleeping on wait channel. */

/* Channel should not already be locked. */

void wchan_wakeone(struct wchan *wc);

void wchan_wakeall(struct wchan *wc);

CS350 Operating Systems Winter 2014

Threads and Concurrency 19

Creating Threads Usingthread fork()

/* From kern/synchprobs/catmouse.c */

for (index = 0; index < NumMice; index++) {

error = thread_fork("mouse_simulation thread",

NULL, mouse_simulation, NULL, index);

if (error) {

panic("mouse_simulation: thread_fork failed: %s\n",

strerror(error));

}

}

/* wait for all of the cats and mice to finish */

for(i=0;i<(NumCats+NumMice);i++) {

P(CatMouseWait);

}

CS350 Operating Systems Winter 2014

Threads and Concurrency 20

Scheduling

• scheduling means deciding which thread should run next

• scheduling is implemented by ascheduler, which is part of the thread library

• simple FIFO scheduling:

– scheduler maintains a queue of threads, often called theready queue

– the first thread in the ready queue is the running thread

– on a context switch the running thread is moved to the end of the ready

queue, and new first thread is allowed to run

– newly created threads are placed at the end of the ready queue

• more on scheduling later. . .

CS350 Operating Systems Winter 2014

Threads and Concurrency 21

Preemption

• Yield() allows programs tovoluntarily pause their execution to allow

another thread to run

• sometimes it is desirable to make a thread stop running even if it has not called

Yield()

• this kind ofinvoluntary context switch is calledpreemption of the running

thread

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the

application has not called a thread library function

• this is normally accomplished usinginterrupts

CS350 Operating Systems Winter 2014

Threads and Concurrency 22

Review: Interrupts

• an interrupt is an event that occurs during the execution of aprogram

• interrupts are caused by system devices (hardware), e.g., atimer, a disk
controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed
location in memory

• at that memory location, the thread library places a procedure called an
interrupt handler

• the interrupt handler normally:

1. saves the current thread context (in OS/161, this is savedin a trap frame on
the current thread’s stack)

2. determines which device caused the interrupt and performs device-specific
processing

3. restores the saved thread context and resumes execution in that context
where it left off at the time of the interrupt.

CS350 Operating Systems Winter 2014

Threads and Concurrency 23

Round-Robin Scheduling

• round-robin is one example of a preemptive scheduling policy

• round-robin scheduling is similar to FIFO scheduling, except that it is

preemptive

• as in FIFO scheduling, there is a ready queue and the thread atthe front of the

ready queue runs

• unlike FIFO, a limit is placed on the amount of time that a thread can run before

it is preempted

• the amount of time that a thread is allocated is called the schedulingquantum

• when the running thread’s quantum expires, it is preempted and moved to the

back of the ready queue. The thread at the front of the ready queue is

dispatched and allowed to run.

CS350 Operating Systems Winter 2014

Threads and Concurrency 24

Implementing Preemptive Scheduling

• suppose that the system timer generates an interrupt everyt time units, e.g.,

once every millisecond

• suppose that the thread library wants to use a scheduling quantumq = 500t,

i.e., it will preempt a thread after half a second of execution

• to implement this, the thread library can maintain a variable called

running time to track how long the current thread has been running:

– when a thread is intially dispatched,running time is set to zero

– when an interrupt occurs, the timer-specific part of the interrupt handler can

incrementrunning time and then test its value

∗ if running time is less thanq, the interrupt handler simply returns and

the running thread resumes its execution

∗ if running time is equal toq, then the interrupt handler invokes

Yield() to cause a context switch

CS350 Operating Systems Winter 2014

Threads and Concurrency 25

OS/161 Stack after Preemption

stack growth

thread_switch()
stack frame

(switchframe)

application
stack frame(s)

stack frame

interrupt handling
stack frame(s)

thread_yield()

trap frame

saved thread context

CS350 Operating Systems Winter 2014

Threads and Concurrency 26

OS/161 Stack after Voluntary Context Switch (thread yield())

stack growth

application
stack frame(s)

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

(switchframe)

CS350 Operating Systems Winter 2014

