Threads and Concurrency

Review: Program Execution

e Registers

— program counter, stack pointer,.
e Memory

— program code

— program data

— program stack containing procedure activation records
e CPU

— fetches and executes instructions

CS350 Operating Systems Winter 2014

Threads and Concurrency 2
Review: MIPS Register Usage

RO, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assenbler

R2, vO = ## return value / system call nunber

R3, vl = ## return val ue

R4, a0 = ## 1st argunent (to subroutine)

R5, al = ## 2nd ar gunent

R6, a2 = ## 3rd argunent

R7, a3 = ## 4th argunent

CS350 Operating Systems Winter 2014

Threads and Concurrency

Review: MIPS Register Usage

RO8-R15, t0-t7 = ## tenps (not preserved by subroutines)
R24-R25, t8-t9 = ## tenps (not preserved by subroutines)
#it can be used wi thout saving
R16- R23, s0-s7 = ## preserved by subroutines
save before using,
restore before return
R26- 27, kO-k1l = ## reserved for interrupt handl er
R28, ap = ## gl obal pointer
(for easy access to sone vari abl es)
R29, sp = ## stack pointer
R30, s8/fp = ## 9th subroutine reg / frame pointer
R31, ra = ## return addr (used by jal)
CS350 Operating Systems Winter 2014

Threads and Concurrency

What is a Thread?

¢ Athread represents the control state of an executing pmogra

e Athread has an associateghtext (or state), which consists of

— the processor’'s CPU state, including the values of the pragrounter (PC),
the stack pointer, other registers, and the execution mode
(privileged/non-privileged)

— a stack, which is located in the address space of the thrpeatess

Imagine that you would like to suspend the program executod resume
it again later. Think of the thread context as the informatj@mu would
need in order to restart program execution from where itdfivhen it was
suspended.

CS350

Operating Systems Winter 2014

Threads and Concurrency 5

Thread Context

memory.
/ \
\
| 1
1 }
| stack |, data code
i \
! \
! \
I \
1 N /\
| S, thread context
|
] \I
\ /
CPU registers
CS350 Operating Systems Winter 2014
Threads and Concurrency 6

Concurrent Threads
e more than one thread may exist simultaneously (why migktlikia good
idea?)

e each thread has its own context, though they may share a@ccessyram code
and data

e 0on a uniprocessor (one CPU), at most one thread is actuatyuéirg at any
time. The others are paused, waiting to resume execution.

e on a multiprocessor, multiple threads may execute at the sene, but if there
are more threads than processors then some threads willsegand waiting

CS350 Operating Systems Winter 2014

Threads and Concurrency

Example: Concurrent Mouse Simulations

static void nouse_sinmulation(void * unusedpoi nter,

unsi gned | ong nousenunber)

int i; unsigned int bow ;
for(i=0;i<Nunmloops;i++) {
/+ for now, this mouse chooses a random bow from
* which to eat, and it is not synchronized with
* other cats and mce

/* legal bow nunbers range from1l to NunBow s x/
bowl = ((unsigned int)randon() % NunBowl s) + 1
nouse_eat (bow) ;

}

/* indicate that this nmouse is finished */
V(Cat MouseWai t);

CS350 Operating Systems

Winter 2014

Threads and Concurrency

Implementing Threads

e athread library is responsibile for implementing threads

¢ the thread library stores threads’ contexts (or pointethedhreads’ contexts)

when they are not running

¢ the data structure used by the thread library to store adlueatext is

sometimes called #aread control block

In the OS/161 kernel's thread implementation, thread castare stored in

t hr ead structures.

CS350 Operating Systems

Winter 2014

Threads and Concurrency 9

Thread Library and Two Threads

memory
stack 1 stack 2 data code
|f ________________ 1
I |
I/ I
‘ N - - A __________ /7
‘\ thread library
thread 2 context (waiting thread)
CPU registers thread 1 context (running thread)
CS350 Operating Systems Winter 2014
Threads and Concurrency 10

The OS/161t hr ead Structure
/* see kern/include/thread.h */

struct thread {

char =t _nane; /+* Name of this thread =/
const char *t_wchan_name; /* Wait channel name, if sleeping */
threadstate t t_state; /* State this thread is in */

/* Thread subsysteminternal fields. =/
struct thread_machdep t_machdep; /* Any machi ne- dependent goo =/
struct threadlistnode t_listnode; /* run/sleep/zonbie lists =/

void »t_stack; /= Kernel -1evel stack =/

struct switchframe *t_context; /* Register context (on stack) =/
struct cpu *t_cpu; /* CPU thread runs on =/

struct proc *t_proc; /* Process thread belongs to */

CS350 Operating Systems Winter 2014

Threads and Concurrency 11

Thread Library and Two Threads (0S/161)

memory

—
stack 1 stack 2

X)

S|
‘\ thread library

thread structures

CPU registers thread 1 context (running thread)
CS350 Operating Systems Winter 2014
Threads and Concurrency 12

Context Switch, Scheduling, and Dispatching

the act of pausing the execution of one thread and resumegxécution of
another is called éhread) context switch

what happens during a context switch?

1. decide which thread will run next
2. save the context of the currently running thread
3. restore the context of the thread that is to run next

the act of saving the context of the current thread and iirsgethe context of
the next thread to run is calletispatching (the next thread)

sounds simple, but .
— architecture-specific implementation
— thread must save/restore its context carefully, sinceathexecution
continuously changes the context
— can be tricky to understand (at what point does a thread lacgiap? what
is it executing when it resumes?)

CS350 Operating Systems Winter 2014

Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)
[+ See kern/arch/m ps/thread/switch.S */

swi tchfranme_swi tch:
[+ a0: address of switchframe pointer of old thread. =/
/+* al: address of switchframe pointer of new thread. =/

/+ Allocate stack space for saving 10 registers. 10«4 = 40 =/
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)
sw s8, 28(sp)
sSW s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, O(sp)

[+ Store the old stack pointer in the old thread =/
sw sp, 0(a0)

CS350 Operating Systems Winter 2014

Threads and Concurrency 14

Dispatching on the MIPS (2 of 2)

/+* Get the new stack pointer fromthe new thread */
lw sp, 0(al)
nop /+ delay slot for load */

[+ Now, restore the registers */
lw s0, 0(sp)

lw sl1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /+ delay slot for load */

[+ and return. =/

j ra

addi sp, sp, 40 /+ in delay slot */
.end switchfrane_sw tch

CS350 Operating Systems Winter 2014

Threads and Concurrency 15

Dispatching on the MIPS (Notes)

¢ Not all of the registers are saved during a context switch

e This is because the context switch code is reached via aocall t
t hr ead_sw t ch and by convention on the MIPS not all of the registers are
required to be preserved across subroutine calls

e thus, after a call tewi t chf r ame_swi t ch returns, the caller
(t hread_sw t ch) does not expect all registers to have the same values as
they had before the call - to save time, those registers drgraserved by the
switch

o if the caller wants to reuse those registers it must saveesidre them

CS350 Operating Systems Winter 2014

Threads and Concurrency 16

Thread Library Interface

¢ the thread library interface allows program code to mawifguthreads
e one key thread library interface function¥Yield()

¢ Yield() causes the calling thread to stop and wait, and catlsethread library
to choose some other waiting thread to run in its place. Ierotfords, Yield()
causes a context switch.

e in addition toYi el d(), thread libraries typically provide other thread-related
services:
— create new thread
— end (and destroy) a thread
— cause a thread tadock (to be discussed later)

CS350 Operating Systems Winter 2014

Threads and Concurrency 17

The OS/161 Thread Interface (incomplete)

/= see kern/include/thread. h */

int thread_fork(const char *nanme, struct proc *proc,
void (*func)(void *, unsigned |ong),
voi d *datal, unsigned |ong data2);

/* Cause the current thread to exit. =*/
/* Interrupts need not be disabled. =/
void thread exit(void);

/* Let another thread run, caller stays runnable. =*/
voi d thread_yield(void);

/= Potentially mgrate ready threads to other CPUs x/
voi d thread_consider_m gration(void);

CS350 Operating Systems Winter 2014

Threads and Concurrency 18

The OS/161 Thread / Wait Channel Interface (incomplete)

/= see kern/include/wchan. h =/
voi d wchan_l ock(struct wchan *wc);
voi d wchan_unl ock(struct wchan *wc);

/= Sleep on a wait channel until awakened by soneone el se
* Channel nust be |ocked, and will have been *unl ocked*
* upon return. =*/

voi d wchan_sl eep(struct wchan *wc);

/= \Wake up one/all threads, sleeping on wait channel. =*/
/= Channel should not already be |ocked. =x/

voi d wchan_wakeone(struct wchan *wc);

voi d wchan_wakeal | (struct wchan *wc);

CS350 Operating Systems Winter 2014

Threads and Concurrency 19

| *

Creating Threads Usingt hr ead_f or k()

From kern/ synchpr obs/ cat nouse. c */

for (index = 0; index < NumM ce; index++) {
error = thread_fork("nmouse_simulation thread",

NULL, nouse_simul ation, NULL, index);

if (error) {

| *

pani c("nouse_sinulation: thread fork failed: %\n",
strerror(error));

wait for all of the cats and mce to finish =/

for(i=0;i<(NumCats+NumM ce) ;i ++) {
P(Cat MouseWai t) ;

CS350 Operating Systems Winter 2014
Threads and Concurrency 20

Scheduling

scheduling means deciding which thread should run next
scheduling is implemented bysaheduler, which is part of the thread library

simple FIFO scheduling:
— scheduler maintains a queue of threads, often calledetinly queue
— the first thread in the ready queue is the running thread

— on a context switch the running thread is moved to the endeoféhdy
queue, and new first thread is allowed to run

— newly created threads are placed at the end of the ready queue

more on scheduling later .

CS350 Operating Systems Winter 2014

Threads and Concurrency 21

Preemption
e Yi el d() allows programs teoluntarily pause their execution to allow
another thread to run

e sometimes it is desirable to make a thread stop running évigmais not called
Yi el d()

e this kind ofinvoluntary context switch is callegreemption of the running
thread

¢ to implement preemption, the thread library must have a meéfgetting
control” (causing thread library code to be executed) eliengh the
application has not called a thread library function

e this is normally accomplished usimgterrupts

CS350 Operating Systems Winter 2014

Threads and Concurrency 22

Review: Interrupts

e an interrupt is an event that occurs during the executionpsbgram

e interrupts are caused by system devices (hardware), gien a disk
controller, a network interface

e when an interrupt occurs, the hardware automatically temagontrol to a fixed
location in memory

e at that memory location, the thread library places a proeedalled an
interrupt handler
¢ the interrupt handler normally:

1. saves the current thread context (in OS/161, this is savettap frame on
the current thread’s stack)

2. determines which device caused the interrupt and pesfdewice-specific
processing

3. restores the saved thread context and resumes exeaqutluat context
where it left off at the time of the interrupt.

CS350 Operating Systems Winter 2014

Threads and Concurrency 23

Round-Robin Scheduling

e round-robin is one example of a preemptive scheduling policy

e round-robin scheduling is similar to FIFO scheduling, gtdbat it is
preemptive

e as in FIFO scheduling, there is a ready queue and the threhd fibnt of the
ready queue runs

¢ unlike FIFO, a limit is placed on the amount of time that a #laitean run before
it is preempted

¢ the amount of time that a thread is allocated is called thedudingquantum

e when the running thread’s quantum expires, it is preempteidh@oved to the

back of the ready queue. The thread at the front of the readyejis
dispatched and allowed to run.

CS350 Operating Systems Winter 2014

Threads and Concurrency 24

Implementing Preemptive Scheduling

e suppose that the system timer generates an interrupt eviemg units, e.g.,
once every millisecond

e suppose that the thread library wants to use a schedulingumug = 500¢,
l.e., it will preempt a thread after half a second of executio

¢ to implement this, the thread library can maintain a vadatalled
runni ng_ti nme to track how long the current thread has been running:

— when a thread is intially dispatchedynni ng_t i ne is set to zero

— when an interrupt occurs, the timer-specific part of thermfe handler can
incrementr unni ng_t i me and then test its value
« if runni ng_t i me is less thany, the interrupt handler simply returns and
the running thread resumes its execution
« if runni ng_t i me is equal tog, then the interrupt handler invokes
Yi el d() to cause a context switch

CS350 Operating Systems Winter 2014

Threads and Concurrency 25

0S/161 Stack after Preemption

application
”stacrk frqme(;)

stack grow

trap frame

interrqpt handling
stack frame(s)
thread_yield
stack Tr)émeo

thread_switch()
stack frame

saved thread context
(switchframe)

CS350 Operating Systems Winter 2014

Threads and Concurrency 26

0S/161 Stack after Voluntary Context Switch ¢ hr ead_yi el d())

application
stack frame(s)

stack growth

thread_yield()
stack frame

thread_switch
stack frame

saved thread context
(switchframe)

CS350 Operating Systems Winter 2014

