
I/O 1

Bus Architecture Example

USB

memory

bus

SATA

PCI−E

CPU CPU

Bridge Memory

keyboard
mouse

Graphics

CS350 Operating Systems Winter 2015

I/O 2

Simplified Bus Architecture

bus

keyboard mouse
Graphics

CPU CPU

Memory

CS350 Operating Systems Winter 2015



I/O 3

Sys/161 LAMEbus Device Examples

• timer/clock - current time, timer, beep

• disk drive - persistent storage

• serial console - character input/output

• text screen - character-oriented graphics

• network interface - packet input/output

CS350 Operating Systems Winter 2015

I/O 4

Device Register Example: Sys/161 timer/clock

Offset Size Type Description

0 4 status current time (seconds)

4 4 status current time (nanoseconds)

8 4 command restart-on-expiry

12 4 status and command interrupt (reading clears)

16 4 status and command countdown time (microseconds)

20 4 command speaker (causes beeps)

CS350 Operating Systems Winter 2015



I/O 5

Device Register Example: Sys/161 disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer

CS350 Operating Systems Winter 2015

I/O 6

Device Drivers

• a device driver is a part of the kernel that interacts with a device

• example: write character to serial output device

write character to device data register

write output command to device command register

repeat {

read device status register

} until device status is ‘‘completed’’

clear the device status register

• this example illustrates polling: the driver repeatedly checks whether the device

is finished, until it is finished.

CS350 Operating Systems Winter 2015



I/O 7

Another Polling Example

write target sector number into sector number register

write output data (512 bytes) into transfer buffer

write ‘‘write’’ command into status register

repeat {

read status register

} until status is ‘‘completed’’ (or error)

clear the status register

Disk operations are slow. The device driver may have to poll for a long time.

CS350 Operating Systems Winter 2015

I/O 8

Using Interrupts to Avoid Polling

• polling can be avoided if the device can use interrupts to indicate that it is

finished

• example: disk write operation using interrupts:

write target sector number into sector number register

write output data (512 bytes) into transfer buffer

write ’’write’’ command into status register

block until device generates completion interrupt

read status register to check for errors

clear status register

• while thread running the driver is blocked, the CPU is free to run other threads

• kernel synchronization primitives (e.g., semaphores) can be used to implement

blocking

CS350 Operating Systems Winter 2015



I/O 9

Device Data Transfer

• Sometimes, a device operation will involve a large chunk of data - much larger

than can be moved with a single instruction.

– example: disk read or write operation

• Devices may have data buffers for such data - but how to get the data between

the device and memory?

– Option 1: program-controlled I/O

The device driver moves the data iteratively, one word at a time.

∗ Simple, but the CPU is busy while the data is being transferred.

– Option 2: direct memory access (DMA)

∗ CPU is not busy during data transfer, and is free to do something else.

Sys/161 LAMEbus devices do program-controlled I/O.

CS350 Operating Systems Winter 2015

I/O 10

Direct Memory Access (DMA)

• DMA is used for block data transfers between devices (e.g., a disk controller)

and memory

• Under DMA, the CPU initiates the data transfer and is notified when the transfer

is finished. However, the device (not the CPU) controls the transfer itself.

bus

keyboard mouse
Graphics

CPU CPU

Memory

2

3

1

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU

CS350 Operating Systems Winter 2015



I/O 11

Device Driver for Disk Write with DMA

write target disk sector number into sector number register

write source memory address into address register

write ’’write’’ command into status register

block (sleep) until device generates completion interrupt

read status register to check for errors

clear status register

Note: driver no longer copies data into device transfer buffer

CS350 Operating Systems Winter 2015

I/O 12

Accessing Devices

• how can a device driver access device registers?

• Option 1: special I/O instructions

– such as in and out instructions on x86

– device registers are assigned “port” numbers

– instructions transfer data between a specified port and a CPU register

–

• Option 2: memory-mapped I/O

– each device register has a physical memory address

– device drivers can read from or write to device registers using normal load

and store instructions, as though accessing memory

CS350 Operating Systems Winter 2015



I/O 13

MIPS/OS161 Physical Address Space

RAM

devices: 0x1fe00000 − 0x1fffffff

ROM: 0x1fc00000 − 0x1fdfffff

64 KB device "slot"

0x00000000 0xffffffff

0x1fe00000 0x1fffffff

Each device is assigned to one of 32 64KB device “slots”. A device’s regis-

ters and data buffers are memory-mapped into its assigned slot.

CS350 Operating Systems Winter 2015

I/O 14

Logical View of a Disk Drive

• disk is an array of numbered blocks (or sectors)

• each block is the same size (e.g., 512 bytes)

• blocks are the unit of transfer between the disk and memory

– typically, one or more contiguous blocks can be transferred in a single

operation

• storage is non-volatile, i.e., data persists even when the device is without power

CS350 Operating Systems Winter 2015



I/O 15

A Disk Platter’s Surface

Track

Sector

CS350 Operating Systems Winter 2015

I/O 16

Physical Structure of a Disk Drive

Cylinder

Shaft

Track

Sector

CS350 Operating Systems Winter 2015



I/O 17

Simplified Cost Model for Disk Block Transfer

• moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

rotational latency: wait until the desired sectors spin to the read/write heads

transfer time: wait while the desired sectors spin past the read/write heads

• request service time is the sum of seek time, rotational latency, and transfer time

tservice = tseek + trot + ttransfer

• note that there are other overheads but they are typically small relative to these

three

CS350 Operating Systems Winter 2015

I/O 18

Rotational Latency and Transfer Time

• rotational latency depends on the rotational speed of the disk

• if the disk spins at ω rotations per second:

0 ≤ trot ≤
1

ω

• expected rotational latency:

t̄rot =
1

2ω

• transfer time depends on the rotational speed and on the amount of data

transferred

• if k sectors are to be transferred and there are T sectors per track:

ttransfer =
k

Tω

CS350 Operating Systems Winter 2015



I/O 19

Seek Time

• seek time depends on the speed of the arm on which the read/write heads are

mounted.

• a simple linear seek time model:

– tmaxseek is the time required to move the read/write heads from the

innermost cylinder to the outermost cylinder

– C is the total number of cylinders

• if k is the required seek distance (k > 0):

tseek(k) =
k

C
tmaxseek

CS350 Operating Systems Winter 2015

I/O 20

Performance Implications of Disk Characteristics

• larger transfers to/from a disk device are more efficient than smaller ones. That

is, the cost (time) per byte is smaller for larger transfers. (Why?)

• sequential I/O is faster than non-sequential I/O

– sequential I/O operations eliminate the need for (most) seeks

– disks use other techniques, like track buffering, to reduce the cost of

sequential I/O even more

CS350 Operating Systems Winter 2015



I/O 21

Disk Head Scheduling

• goal: reduce seek times by controlling the order in which requests are serviced

• disk head scheduling may be performed by the controller, by the operating

system, or both

• for disk head scheduling to be effective, there must be a queue of outstanding

disk requests (otherwise there is nothing to reorder)

• an on-line approach is required: the disk request queue is not static

CS350 Operating Systems Winter 2015

I/O 22

FCFS Disk Head Scheduling

• handle requests in the order in which they arrive

• fair and simple, but no optimization of seek times

150 200100501

104

37 122 14 130 65 70

head

104

14 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Winter 2015



I/O 23

Shortest Seek Time First (SSTF)

• choose closest request (a greedy approach)

• seek times are reduced, but requests may starve

150 200100501

104 37 122 14 130 65 70

head

10414 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Winter 2015

I/O 24

Elevator Algorithms (SCAN)

• Under SCAN, aka the elevator algorithm, the disk head moves in one direction

until there are no more requests in front of it, then reverses direction.

• there are many variations on this idea

• SCAN reduces seek times (relative to FCFS), while avoiding starvation

CS350 Operating Systems Winter 2015



I/O 25

SCAN Example

150 200100501

104

37 122 14 130 65 70

head

104

14 37 53 65 70 122 130 183

arrival order: 183

CS350 Operating Systems Winter 2015


