

	Device Register Example: Sys/161 timer/clock				
Offerst	C:	True	Description		
Offset	Size	Туре	Description		
0	4	status	current time (seconds)		
4	4	status	current time (nanoseconds)		
8	4	command	restart-on-expiry		
12	4	status and command	interrupt (reading clears)		
16	4	status and command	countdown time (microseconds)		
20	4	command	speaker (causes beeps)		

Device Register Example: Sys/161 disk controller

Offset	Size	Туре	Description
0	4	status	number of sectors
4	4	status and command	status
8	4	command	sector number
12	4	status	rotational speed (RPM)
32768	512	data	transfer buffer

CS350

Operating Systems

Winter 2015

5

 polling can be avoide finished 	d if the device can use interrupts to indicate that it is
• example: disk write of	peration using interrupts:
write target s write output d write ''write' block until de read status re clear status r	ector number into sector number registe ata (512 bytes) into transfer buffer ' command into status register vice generates completion interrupt gister to check for errors egister
 while thread running kernel synchronization blocking 	the driver is blocked, the CPU is free to run other threads n primitives (e.g., semaphores) can be used to implement

- Option 1: program-controlled I/O
 The device driver moves the data iteratively, one word at a time.
 - * Simple, but the CPU is *busy* while the data is being transferred.
- Option 2: direct memory access (DMA)
 - * CPU is not busy during data transfer, and is free to do something else.

Sys/161 LAMEbus devices do program-controlled I/O.

CS350

Operating Systems

Winter 2015

9

I/O		11
	Device Driver for Disk Write with DMA	
write target	disk sector number into sector number	regist
write source	memory address into address register	
write "'write	e'' command into status register	
block (sleep)	until device generates completion int	terrupt
read status r	register to check for errors	
clear status	register	
Note: c	lriver no longer copies data into device transfer buffer	
<u></u>	Operating Systems	Winter 2015
0000	Operating Systems	willer 2013

	Accessing Devices
• how can	a device driver access device registers?
• Option	: special I/O instructions
– such	as in and out instructions on x86
– devie	ce registers are assigned "port" numbers
– instr	uctions transfer data between a specified port and a CPU register
-	
• Option 2	2: memory-mapped I/O
– each	device register has a physical memory address
- device and s	ce drivers can read from or write to device registers using normal load store instructions, as though accessing memory

Rotational Latency and Transfer Time	
• rotational latency depends on the rotational speed of the disk	
• if the disk spins at ω rotations per second:	
$0 \le t_{rot} \le \frac{1}{\omega}$	
• expected rotational latency: $\bar{t}_{rot} = \frac{1}{2\omega}$	
• transfer time depends on the rotational speed and on the amount of data transferred	
• if k sectors are to be transferred and there are T sectors per track:	
$t_{transfer} = \frac{k}{T\omega}$	

