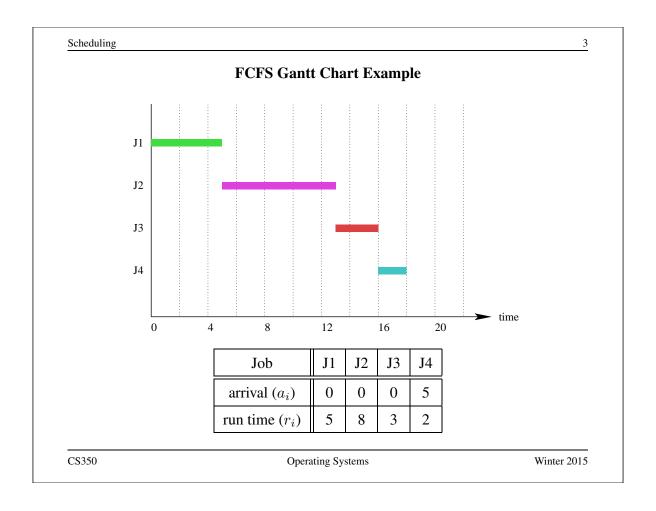
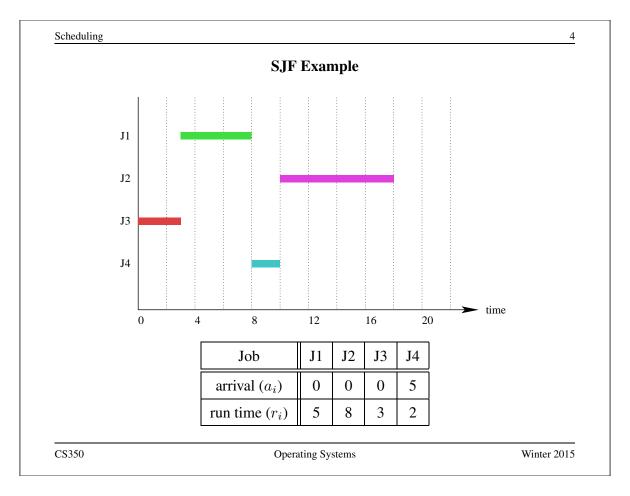
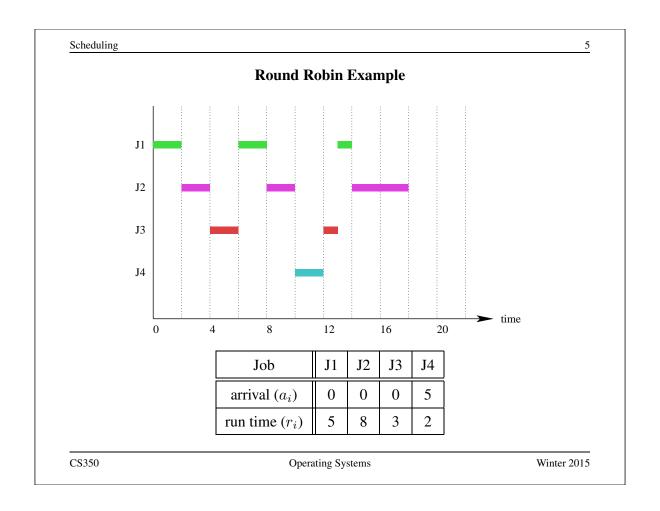
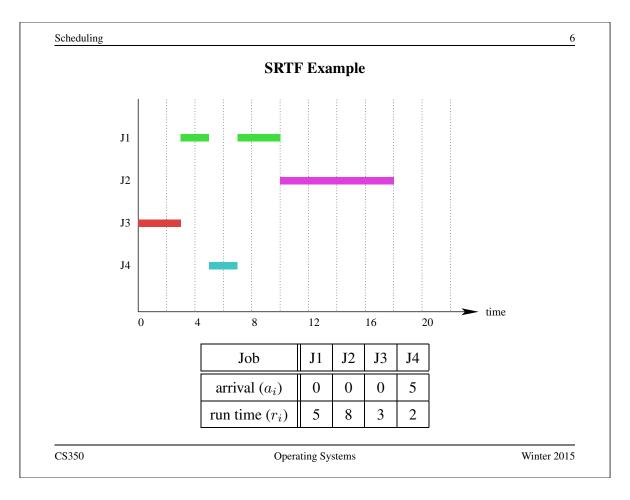
Job Scheduling Model


- problem scenario: a set of *jobs* needs to be executed using a single server, on which only one job at a time may run
- for the ith job, we have an arrival time a_i and a run time r_i
- after the *i*th job has run on the server for total time r_i , it finishes and leaves the system
- a job *scheduler* decides which job should be running on the server at each point in time
- let s_i ($s_i \ge a_i$) represent the time at which the *i*th job first runs, and let f_i represent the time at which the *i*th job finishes
 - the turnaround time of the ith job is $f_i a_i$
 - the response time of the ith job is $s_i a_i$


CS350 Operating Systems Winter 2015


Scheduling 2


Basic Non-Preemptive Schedulers: FCFS and SJF

- FCFS: runs jobs in arrival time order.
 - simple, avoids starvation
 - pre-emptive variant: round-robin
- SJF: shortest job first run jobs in increasing order of r_i
 - minimizes average turnaround time
 - long jobs may starve
 - pre-emptive variant: SRTF (shortest remaining time first)

CPU Scheduling

- CPU scheduling is job scheduling where:
 - the server is a CPU (or a single core of a multi-core CPU)
 - the jobs are ready threads
 - * a thread "arrives" when it becomes ready, i.e., when it is first created, or when it wakes up from sleep
 - * the run-time of the thread is the amount of time that it will run before it either finishes or blocks
 - thread run times are typically *not known* in advance by the scheduler
- typical scheduler objectives
 - responsiveness low response time for some or all threads
 - "fair" sharing of the CPU
 - efficiency there is a cost to switching

CS350 Operating Systems Winter 2015

Scheduling 8

Prioritization

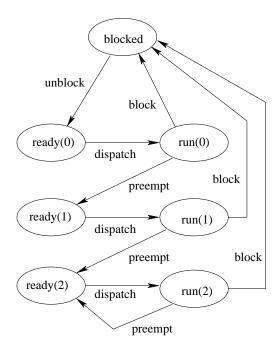
- CPU schedulers are often expected to consider process or thread priorities
- priorities may be
 - specified by the application (e.g., Linux setpriority/sched_setscheduler)
 - chosen by the scheduler
 - some combination of these
- two approaches to scheduling with priorites
 - 1. schedule the highest priority thread
 - 2. weighted fair sharing
 - let p_i be the priority of the *i*th thread
 - try to give each thread a "share" of the CPU in proportion to its priority:

$$\frac{p_i}{\sum_j p_j} \tag{1}$$

Multi-level Feedback Queues

- objective: good responsiveness for *interactive* processes
 - threads of interactive processes block frequently, have short run times
- idea: gradually diminish priority of threads with long run times and infrequent blocking
 - if a thread blocks before its quantum is used up, raise its priority
 - if a thread uses its entire quantum, *lower* its priority

CS350 Operating Systems Winter 2015

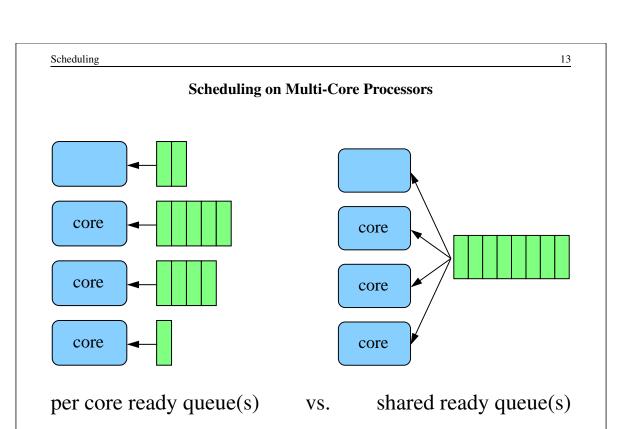

Scheduling 10

Multi-level Feedback Queues (Algorithm)

- scheduler maintains several round-robin ready queues
 - highest priority threads in queue Q_0 , lower priority in Q_1 , still lower in Q_2 , and so on.
- scheduler always chooses thread from the lowest non-empty queue
- threads in queue Q_i use quantum q_i , and $q_i \leq q_j$ if i < j
- newly ready threads go into ready queue Q_0
- a level i thread that is preempted goes into queue Q_{i+1}

This basic algorithm may *starve* threads in lower queues. Various enhancements can avoid this, e.g, periodically migrate all threads into Q_0 .

3 Level Feedback Queue State Diagram



CS350 Operating Systems Winter 2015

Scheduling 12

Linux Completely Fair Scheduler (CFS) - Key Ideas

- "Completely Fair Scheduling" a weighted fair sharing approach
- suppose that c_i is the actual amount of time that the scheduler has allowed the ith thread to run.
- on an *ideally shared* processor, we would expect $c_0 \frac{\sum_j p_j}{p_0} = c_1 \frac{\sum_j p_j}{p_1} = \cdots$
- CFS calls $c_i \frac{\sum_j p_j}{p_i}$ the *virtual runtime* of the *i*th thread, and tracks it for each thread
- CFS chooses the thread with the lowest virtual runtime, and runs it until some other thread's virtual runtime is lower (subject to a minimum runtime quantum)
 - virtual runtime advances more slowly for higher priority threads, so they get longer time slices
 - all ready threads run regularly, so good responsiveness

CS350 Operating Systems Winter 2015

Scheduling 14

Scalability and Cache Affinity

- Contention and Scalability
 - access to shared ready queue is a critical section, mutual exclusion needed
 - as number of cores grows, contention for ready queue becomes a problem
 - per core design scales to a larger number of cores
- CPU cache affinity
 - as thread runs, data it accesses is loaded into CPU cache(s)
 - moving the thread to another core means data must be reloaded into that core's caches
 - as thread runs, it acquires an *affinity* for one core because of the cached data
 - per core design benefits from affinity by keeping threads on the same core
 - shared queue design does not

Load Balancing

- in per-core design, queues may have different lengths
- this results in *load imbalance* across the cores
 - cores may be idle while others are busy
 - threads on lightly loaded cores get more CPU time than threads on heavily loaded cores
- not an issue in shared queue design
- per-core designs typically need some mechanism for *thread migration* to address load imbalances
 - migration means moving threads from heavily loaded cores to lightly loaded cores

CS350	Operating Systems	Winter 2015
-------	-------------------	-------------