
Scheduling 1

Job Scheduling Model

• problem scenario: a set of jobs needs to be executed using a single server, on

which only one job at a time may run

• for the ith job, we have an arrival time ai and a run time ri

• after the ith job has run on the server for total time ri, it finishes and leaves the

system

• a job scheduler decides which job should be running on the server at each point

in time

• let si (si ≥ ai) represent the time at which the ith job first runs, and let fi

represent the time at which the ith job finishes

– the turnaround time of the ith job is fi − ai

– the response time of the ith job is si − ai

CS350 Operating Systems Winter 2015



Scheduling 2

Basic Non-Preemptive Schedulers: FCFS and SJF

• FCFS: runs jobs in arrival time order.

– simple, avoids starvation

– pre-emptive variant: round-robin

• SJF: shortest job first - run jobs in increasing order of ri

– minimizes average turnaround time

– long jobs may starve

– pre-emptive variant: SRTF (shortest remaining time first)

CS350 Operating Systems Winter 2015



Scheduling 3

FCFS Gantt Chart Example

J3

time

J4

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Winter 2015



Scheduling 4

SJF Example

20
time

J4

J3

J2

J1

0 4 8 12 16

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Winter 2015



Scheduling 5

Round Robin Example

20
time

J4

J3

J2

J1

0 4 8 12 16

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Winter 2015



Scheduling 6

SRTF Example

20
time

J4

J3

J2

J1

0 4 8 12 16

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Winter 2015



Scheduling 7

CPU Scheduling

• CPU scheduling is job scheduling where:

– the server is a CPU (or a single core of a multi-core CPU)

– the jobs are ready threads

∗ a thread “arrives” when it becomes ready, i.e., when it is first created, or

when it wakes up from sleep

∗ the run-time of the thread is the amount of time that it will run before it

either finishes or blocks

– thread run times are typically not known in advance by the scheduler

• typical scheduler objectives

– responsiveness - low response time for some or all threads

– “fair” sharing of the CPU

– efficiency - there is a cost to switching

CS350 Operating Systems Winter 2015



Scheduling 8

Prioritization

• CPU schedulers are often expected to consider process or thread priorities

• priorities may be

– specified by the application (e.g., Linux

setpriority/sched setscheduler)

– chosen by the scheduler

– some combination of these

• two approaches to scheduling with priorites

1. schedule the highest priority thread

2. weighted fair sharing

– let pi be the priority of the ith thread

– try to give each thread a “share” of the CPU in proportion to its priority:

pi∑
j pj

(1)

CS350 Operating Systems Winter 2015



Scheduling 9

Multi-level Feedback Queues

• objective: good responsiveness for interactive processes

– threads of interactive processes block frequently, have short run times

• idea: gradually diminish priority of threads with long run times and infrequent

blocking

– if a thread blocks before its quantum is used up, raise its priority

– if a thread uses its entire quantum, lower its priority

CS350 Operating Systems Winter 2015



Scheduling 10

Multi-level Feedback Queues (Algorithm)

• scheduler maintains several round-robin ready queues

– highest priority threads in queue Q0, lower priority in Q1, still lower in Q2,

and so on.

• scheduler always chooses thread from the lowest non-empty queue

• threads in queue Qi use quantum qi, and qi ≤ qj if i < j

• newly ready threads go into ready queue Q0

• a level i thread that is preempted goes into queue Qi+1

This basic algorithm may starve threads in lower queues. Various enhance-

ments can avoid this, e.g, periodically migrate all threads into Q0.

CS350 Operating Systems Winter 2015



Scheduling 11

3 Level Feedback Queue State Diagram

unblock

blocked

ready(0) run(0)

ready(1)

ready(2)

run(1)

run(2)

block

block

block

preempt

preempt

preempt

dispatch

dispatch

dispatch

CS350 Operating Systems Winter 2015



Scheduling 12

Linux Completely Fair Scheduler (CFS) - Key Ideas

• “Completely Fair Scheduling” - a weighted fair sharing approach

• suppose that ci is the actual amount of time that the scheduler has allowed the

ith thread to run.

• on an ideally shared processor, we would expect c0

∑
j
pj

p0

= c1

∑
j
pj

p1

= · · ·

• CFS calls ci

∑
j
pj

pi
the virtual runtime of the ith thread, and tracks it for each

thread

• CFS chooses the thread with the lowest virtual runtime, and runs it until some

other thread’s virtual runtime is lower (subject to a minimum runtime quantum)

– virtual runtime advances more slowly for higher priority threads, so they get

longer time slices

– all ready threads run regularly, so good responsiveness

CS350 Operating Systems Winter 2015



Scheduling 13

Scheduling on Multi-Core Processors

core

core

core

core

core

core

core

core

per core ready queue(s) vs. shared ready queue(s)

CS350 Operating Systems Winter 2015



Scheduling 14

Scalability and Cache Affinity

• Contention and Scalability

– access to shared ready queue is a critical section, mutual exclusion needed

– as number of cores grows, contention for ready queue becomes a problem

– per core design scales to a larger number of cores

• CPU cache affinity

– as thread runs, data it accesses is loaded into CPU cache(s)

– moving the thread to another core means data must be reloaded into that

core’s caches

– as thread runs, it acquires an affinity for one core because of the cached data

– per core design benefits from affinity by keeping threads on the same core

– shared queue design does not

CS350 Operating Systems Winter 2015



Scheduling 15

Load Balancing

• in per-core design, queues may have different lengths

• this results in load imbalance across the cores

– cores may be idle while others are busy

– threads on lightly loaded cores get more CPU time than threads on heavily

loaded cores

• not an issue in shared queue design

• per-core designs typically need some mechanism for thread migration to

address load imbalances

– migration means moving threads from heavily loaded cores to lightly loaded

cores

CS350 Operating Systems Winter 2015


