
Scheduling 1

Job Scheduling Model

• problem scenario: a set of jobs needs to be executed using a single server, on

which only one job at a time may run

• for the ith job, we have an arrival time ai and a run time ri

• after the ith job has run on the server for total time ri, it finishes and leaves the

system

• a job scheduler decides which job should be running on the server at each point

in time

• let si (si ≥ ai) represent the time at which the ith job first runs, and let fi

represent the time at which the ith job finishes

– the turnaround time of the ith job is fi − ai

– the response time of the ith job is si − ai
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Basic Non-Preemptive Schedulers: FCFS and SJF

• FCFS: runs jobs in arrival time order.

– simple, avoids starvation

– pre-emptive variant: round-robin

• SJF: shortest job first - run jobs in increasing order of ri

– minimizes average turnaround time

– long jobs may starve

– pre-emptive variant: SRTF (shortest remaining time first)
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FCFS Gantt Chart Example
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SJF Example
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Round Robin Example
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SRTF Example
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CPU Scheduling

• CPU scheduling is job scheduling where:

– the server is a CPU (or a single core of a multi-core CPU)

– the jobs are ready threads

∗ a thread “arrives” when it becomes ready, i.e., when it is first created, or

when it wakes up from sleep

∗ the run-time of the thread is the amount of time that it will run before it

either finishes or blocks

– thread run times are typically not known in advance by the scheduler

• typical scheduler objectives

– responsiveness - low response time for some or all threads

– “fair” sharing of the CPU

– efficiency - there is a cost to switching
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Prioritization

• CPU schedulers are often expected to consider process or thread priorities

• priorities may be

– specified by the application (e.g., Linux

setpriority/sched setscheduler)

– chosen by the scheduler

– some combination of these

• two approaches to scheduling with priorites

1. schedule the highest priority thread

2. weighted fair sharing

– let pi be the priority of the ith thread

– try to give each thread a “share” of the CPU in proportion to its priority:

pi∑
j pj

(1)
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Multi-level Feedback Queues

• objective: good responsiveness for interactive processes

– threads of interactive processes block frequently, have short run times

• idea: gradually diminish priority of threads with long run times and infrequent

blocking

– if a thread blocks before its quantum is used up, raise its priority

– if a thread uses its entire quantum, lower its priority
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Multi-level Feedback Queues (Algorithm)

• scheduler maintains several round-robin ready queues

– highest priority threads in queue Q0, lower priority in Q1, still lower in Q2,

and so on.

• scheduler always chooses thread from the lowest non-empty queue

• threads in queue Qi use quantum qi, and qi ≤ qj if i < j

• newly ready threads go into ready queue Q0

• a level i thread that is preempted goes into queue Qi+1

This basic algorithm may starve threads in lower queues. Various enhance-

ments can avoid this, e.g, periodically migrate all threads into Q0.
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3 Level Feedback Queue State Diagram
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Linux Completely Fair Scheduler (CFS) - Key Ideas

• “Completely Fair Scheduling” - a weighted fair sharing approach

• suppose that ci is the actual amount of time that the scheduler has allowed the

ith thread to run.

• on an ideally shared processor, we would expect c0

∑
j
pj

p0

= c1

∑
j
pj

p1

= · · ·

• CFS calls ci

∑
j
pj

pi
the virtual runtime of the ith thread, and tracks it for each

thread

• CFS chooses the thread with the lowest virtual runtime, and runs it until some

other thread’s virtual runtime is lower (subject to a minimum runtime quantum)

– virtual runtime advances more slowly for higher priority threads, so they get

longer time slices

– all ready threads run regularly, so good responsiveness
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Scheduling on Multi-Core Processors
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Scalability and Cache Affinity

• Contention and Scalability

– access to shared ready queue is a critical section, mutual exclusion needed

– as number of cores grows, contention for ready queue becomes a problem

– per core design scales to a larger number of cores

• CPU cache affinity

– as thread runs, data it accesses is loaded into CPU cache(s)

– moving the thread to another core means data must be reloaded into that

core’s caches

– as thread runs, it acquires an affinity for one core because of the cached data

– per core design benefits from affinity by keeping threads on the same core

– shared queue design does not
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Load Balancing

• in per-core design, queues may have different lengths

• this results in load imbalance across the cores

– cores may be idle while others are busy

– threads on lightly loaded cores get more CPU time than threads on heavily

loaded cores

• not an issue in shared queue design

• per-core designs typically need some mechanism for thread migration to

address load imbalances

– migration means moving threads from heavily loaded cores to lightly loaded

cores
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