
Threads and Concurrency 1

Review: Program Execution

• Registers

– program counter, stack pointer, . . .

• Memory

– program code

– program data

– program stack containing procedure activation records

• CPU

– fetches and executes instructions

CS350 Operating Systems Winter 2015

Threads and Concurrency 2

What is a Thread?

• A thread represents the control state of an executing program.

• A thread has an associated context (or state), which consists of

– the processor’s CPU state, including the values of the program counter (PC),

the stack pointer, other registers, and the execution mode

(privileged/non-privileged)

– a stack, which is located in the address space of the thread’s process

Imagine that you would like to suspend the program execution, and resume

it again later. Think of the thread context as the information you would

need in order to restart program execution from where it left off when it was

suspended.

CS350 Operating Systems Winter 2015

Threads and Concurrency 3

Thread Context

memory

CPU registers

codedatastack

thread context

CS350 Operating Systems Winter 2015

Threads and Concurrency 4

Concurrent Threads

• more than one thread may exist simultaneously (why might this be a good

idea?)

• each thread has its own context, though they share access to program code and

data

• on a uniprocessor (one CPU), at most one thread is actually executing at any

time. The others are paused, waiting to resume execution.

• on a multiprocessor, multiple threads may execute at the same time, but if there

are more threads than processors then some threads will be paused and waiting

CS350 Operating Systems Winter 2015

Threads and Concurrency 5

Two Threads, One Running

CPU registers

memory

codestack 2 datastack 1

thread library

thread 1 context (running thread)

thread 2 context (waiting thread)

CS350 Operating Systems Winter 2015

Threads and Concurrency 6

Thread Interface (Partial), With OS/161 Examples

• a thread library implements threads

• thread library provides a thread interface, used by program code to manipulate

threads

• common thread interface functions include

– create new thread

int thread_fork(const char *name, struct proc *proc,

void (*func)(void *, unsigned long),

void *data1, unsigned long data2);

– end (and destroy) the current thread

void thread_exit(void);

– cause current thread to yield (to be discussed later)

void thread_yield(void);

• see kern/include/thread.h

CS350 Operating Systems Winter 2015

Threads and Concurrency 7

Example: Creating Threads Using thread fork()

for (index = 0; index < NumMice; index++) {

error = thread_fork("mouse_simulation thread",

NULL, mouse_simulation, NULL, index);

if (error) {

panic("mouse_simulation: thread_fork failed: %s\n",

strerror(error));

}

}

/* wait for all of the cats and mice to finish */

for(i=0;i<(NumCats+NumMice);i++) {

P(CatMouseWait);

}

What kern/synchprobs/catmouse.c actually does is slightly more

elaborate than this.

CS350 Operating Systems Winter 2015

Threads and Concurrency 8

Example: Concurrent Mouse Simulation Threads (simplified)

static void mouse_simulation(void * unusedpointer,

unsigned long mousenumber)

{

int i; unsigned int bowl;

for(i=0;i<NumLoops;i++) {

/* for now, this mouse chooses a random bowl from

* which to eat, and it is not synchronized with

* other cats and mice

*/

/* legal bowl numbers range from 1 to NumBowls */

bowl = ((unsigned int)random() % NumBowls) + 1;

mouse_eat(bowl);

}

/* indicate that this mouse is finished */

V(CatMouseWait);

/* implicit thread_exit() on return from this function */

}

CS350 Operating Systems Winter 2015

Threads and Concurrency 9

Context Switch, Scheduling, and Dispatching

• the act of pausing the execution of one thread and resuming the execution of

another is called a (thread) context switch

• what happens during a context switch?

1. decide which thread will run next

2. save the context of the currently running thread

3. restore the context of the thread that is to run next

• the act of saving the context of the current thread and installing the context of

the next thread to run is called dispatching (the next thread)

• sounds simple, but . . .

– architecture-specific implementation

– thread must save/restore its context carefully, since thread execution

continuously changes the context

– can be tricky to understand (at what point does a thread actually stop? what

is it executing when it resumes?)

CS350 Operating Systems Winter 2015

Threads and Concurrency 10

Scheduling

• scheduling means deciding which thread should run next

• scheduling is implemented by a scheduler, which is part of the thread library

• simple round robin scheduling:

– scheduler maintains a queue of threads, often called the ready queue

– the first thread in the ready queue is the running thread

– on a context switch the running thread is moved to the end of the ready

queue, and new first thread is allowed to run

– newly created threads are placed at the end of the ready queue

• more on scheduling later . . .

CS350 Operating Systems Winter 2015

Threads and Concurrency 11

Causes of Context Switches

• a call to thread yield by a running thread

– running thread voluntarily allows other threads to run

– yielding thread remains runnable, and on the ready queue

• a call to thread exit by a running thread

– running thread is terminated

• running thread blocks, via a call to wchan sleep

– thread is no longer runnable, moves off of the ready queue and into a wait

channel

– more on this later . . .

• running thread is preempted

– running thread involuntarily stops running

– remains runnable, and on the ready queue

CS350 Operating Systems Winter 2015

Threads and Concurrency 12

Preemption

• without preemption, a running thread could potentially run forever, without

yielding, blocking, or exiting

• to ensure fair access to the CPU for all threads, the thread library may preempt

a running thread

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the running

thread has not called a thread library function

• this is normally accomplished using interrupts

CS350 Operating Systems Winter 2015

Threads and Concurrency 13

Review: Interrupts

• an interrupt is an event that occurs during the execution of a program

• interrupts are caused by system devices (hardware), e.g., a timer, a disk

controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed

location in memory

• at that memory location, the thread library places a procedure called an

interrupt handler

• the interrupt handler normally:

1. saves the current thread context (in OS/161, this is saved in a trap frame on

the current thread’s stack)

2. determines which device caused the interrupt and performs device-specific

processing

3. restores the saved thread context and resumes execution in that context

where it left off at the time of the interrupt.

CS350 Operating Systems Winter 2015

Threads and Concurrency 14

Preemptive Round-Robin Scheduling

• In preemptive round-robin scheduling, the thread library imposes a limit on the

amount of time that a thread can run before being preempted

• the amount of time that a thread is allocated is called the scheduling quantum

• when the running thread’s quantum expires, it is preempted and moved to the

back of the ready queue. The thread at the front of the ready queue is

dispatched and allowed to run.

• the quantum is an upper bound on the amount of time that a thread can run once

it has been dispatched

• the dispatched thread may run for less than the scheduling quantum if it yields,

exits, or blocks before its quantum expires

CS350 Operating Systems Winter 2015

Threads and Concurrency 15

Implementing Preemptive Scheduling

• suppose that the system timer generates an interrupt every t time units, e.g.,

once every millisecond

• suppose that the thread library wants to use a scheduling quantum q = 500t,

i.e., it will preempt a thread after half a second of execution

• to implement this, the thread library can maintain a variable called

running time to track how long the current thread has been running:

– when a thread is intially dispatched, running time is set to zero

– when an interrupt occurs, the timer-specific part of the interrupt handler can

increment running time and then test its value

∗ if running time is less than q, the interrupt handler simply returns and

the running thread resumes its execution

∗ if running time is equal to q, then the interrupt handler invokes

thread yield to cause a context switch

CS350 Operating Systems Winter 2015

Threads and Concurrency 16

OS/161 Thread Stack after Voluntary Context Switch (thread yield())

stack growth

stack frame(s)

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

(switchframe)

CS350 Operating Systems Winter 2015

Threads and Concurrency 17

OS/161 Thread Stack after Preemption

stack growth

thread_switch()
stack frame

(switchframe)

stack frame

interrupt handling
stack frame(s)

thread_yield()

trap frame

saved thread context

stack frame(s)

CS350 Operating Systems Winter 2015

Threads and Concurrency 18

Implementing Threads

• the thread library is responsibile for implementing threads

• the thread library stores threads’ contexts (or pointers to the threads’ contexts)

when they are not running

• the data structure used by the thread library to store a thread context is

sometimes called a thread control block

In the OS/161 kernel’s thread implementation, thread contexts are stored in

thread structures.

CS350 Operating Systems Winter 2015

Threads and Concurrency 19

The OS/161 thread Structure

/* see kern/include/thread.h */

struct thread {

char *t_name; /* Name of this thread */

const char *t_wchan_name; /* Wait channel name, if sleeping */

threadstate_t t_state; /* State this thread is in */

/* Thread subsystem internal fields. */

struct thread_machdep t_machdep; /* Any machine-dependent goo */

struct threadlistnode t_listnode; /* run/sleep/zombie lists */

void *t_stack; /* Kernel-level stack */

struct switchframe *t_context; /* Register context (on stack) */

struct cpu *t_cpu; /* CPU thread runs on */

struct proc *t_proc; /* Process thread belongs to */

...

CS350 Operating Systems Winter 2015

Threads and Concurrency 20

Review: MIPS Register Usage

R0, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assembler

R2, v0 = ## return value / system call number

R3, v1 = ## return value

R4, a0 = ## 1st argument (to subroutine)

R5, a1 = ## 2nd argument

R6, a2 = ## 3rd argument

R7, a3 = ## 4th argument

CS350 Operating Systems Winter 2015

Threads and Concurrency 21

Review: MIPS Register Usage

R08-R15, t0-t7 = ## temps (not preserved by subroutines)

R24-R25, t8-t9 = ## temps (not preserved by subroutines)

can be used without saving

R16-R23, s0-s7 = ## preserved by subroutines

save before using,

restore before return

R26-27, k0-k1 = ## reserved for interrupt handler

R28, gp = ## global pointer

(for easy access to some variables)

R29, sp = ## stack pointer

R30, s8/fp = ## 9th subroutine reg / frame pointer

R31, ra = ## return addr (used by jal)

CS350 Operating Systems Winter 2015

Threads and Concurrency 22

Dispatching on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:

/* a0: address of switchframe pointer of old thread. */

/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)

CS350 Operating Systems Winter 2015

Threads and Concurrency 23

Dispatching on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

.end switchframe_switch

CS350 Operating Systems Winter 2015

Threads and Concurrency 24

Dispatching on the MIPS (Notes)

• Not all of the registers are saved during a context switch

• This is because the context switch code is reached via a call to

thread switch and by convention on the MIPS not all of the registers are

required to be preserved across subroutine calls

• thus, after a call to switchframe switch returns, the caller

(thread switch) does not expect all registers to have the same values as

they had before the call - to save time, those registers are not preserved by the

switch

• if the caller wants to reuse those registers it must save and restore them

CS350 Operating Systems Winter 2015

