
Virtual Memory 1

Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– the size of a physical address determines the maximum amount of

addressable physical memory

• Virtual addresses (or logical addresses) are addresses provided by the OS to

processes.

– one virtual address space per process

• Programs use virtual addresses. As a program runs, the hardware (with help

from the operating system) converts each virtual address to a physical address.

• The conversion of a virtual address to a physical address is called address

translation.

On the MIPS, virtual addresses and physical addresses are 32 bits long. This

limits the size of virtual and physical address spaces.
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Simple Address Translation: Dynamic Relocation

• hardware provides a memory management unit (MMU) which includes a

relocation register and a limit register (or bound register).

• to translate a virtual address to a physical address, the MMU:

– checks whether the virtual address is larger than the limit in the limit register

– if it is, the MMU raises an exception

– otherwise, the MMU adds the base address (stored in the relocation register)

to the virtual address to produce the physical address

• The OS maintains a separate base address and limit for each process, and

ensures that the relocation and limit registers in the MMU always contain the

base address and limit of the currently-running process.

• To ensure this, the OS must normally change the values in the MMU’s registers

during each address space switch (i.e., when context switching to a thread of a

different process).
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Properties of Dynamic Relocation

• each virtual address space corresponds to a contiguous range of physical

addresses

• the OS is responsible for deciding where each virtual address space should map

to in physical memory

– the OS must track which parts of physical memory are in use, and which

parts are free

– since different address spaces may have different sizes, the OS must

allocate/deallocate variable-sized chunks of physical memory

– this creates the potential for external fragmentation of physical memory:

wasted, unallocated space

• the MMU is responsible for performing all address translations, using base and

limit information provided to it by the the OS
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Dynamic Relocation: Address Space Diagram
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Dynamic Relocation Mechanism
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Address Translation: Dynamic Relocation Example

Bound register: 0x0011 8000

Relocation register: 0x0010 0000

Process 1: virtual addr 0x000A 1024

Process 1: physical addr = ___________ ?

Process 1: virtual addr 0x0010 E048

Process 1: physical addr = ___________ ?

Bound register: 0x0001 0000

Relocation register: 0x0030 0000

Process 2: virtual addr 0x0001 8090

Process 2: physical addr = ___________ ?

Bound register: 0x000A 1184

Relocation register 0x0020 0000

Process 3: virtual addr 0x000A 1024

Process 3: physical addr = ___________ ?
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Address Translation: Paging

• Each virtual address space is divided into fixed-size chunks called pages

• Physical address space is divided into frames. Frame size matches page size.

• OS maintains a page table for each process. Page table specifies the frame in

which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table

of the running process.
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Address Space Diagram for Paging
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Properties of Paging

• OS is responsible for deciding which frame will hold each page

– simple physical memory management

– potential for internal fragmentation of physical memory: wasted, allocated

space

– virtual address space need not be physically contiguous in physical space

after translation.

• MMU is responsible for performing all address translations using the page table

that is created and maintained by the OS.

• The OS must normally change the values in the MMU registers on each address

space switch, so that they refer to the page table of the currently-running

process.
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How the MMU Translates Virtual Addresses

• The MMU includes a page table base register and a page table length register.

– the base register contains the (physical) address of the first page table entry

for the currently-running process

– the length register contains the number of entries in the page table of the

currently running process.

• To translate a virtual address, the MMU:

– determines the page number and offset of the virtual address

– checks whether the page number is larger than the value in the page table

length register

– if it is, the MMU raises an exception

– otherwise, the MMU uses the page table to determine the frame number of

the frame that holds the virtual page, and combines the frame number and

offset to determine the physical address
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Paging Mechanism
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Address Translation: Paging Example

• Virtual addr = 32 bits, physical addr = 32 bits, offset = 12 bits

Page Table Proc 1 Page Table Proc 2

0x0010 0000 0x0050 0000

Page Frame Page Frame

0 0x5 0002 0 0x4 0001

1 0x5 0001 1 0x7 9005

2 0x5 0000 2 0x7 FADD

3 0x6 0002

Process 1 Process 2

Page Table base register 0x0010 0000 0x0050 0000

Page Table Len register 0x0000 0004 0x0000 0003

Virtual addr 0x0000 2004 0x0000 2004

Physical addr = ___________ ? ___________ ?

Virtual addr 0x0000 31A4 0x0000 31A4

Physical addr = ___________ ? ___________ ?
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Page Table Entries

• the primary payload of each page table entry (PTE) is a frame number

• PTEs typically contain other information as well, such as

– information provided by the kernel to control address translation by the

MMU, such as:

∗ valid bit: is the process permitted to use this part of the address space?

∗ present bit: is this page mapped into physical memory (useful with page

replacement, to be discussed later)

∗ protection bits: to be discussed

– information provided by the MMU to help the kernel manage address

spaces, such as:

∗ reference (use) bit: has the process used this page recently?

∗ dirty bit: has the process changed the contents of this page?
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Validity and Protection

• during address translation, the MMU checks that the page being used by the

process has a valid page table entry

– typically, each PTE contains a valid bit

– invalid PTEs indicate pages that the process is not permitted to use

• the MMU may also enforce other protection rules, for example

– each PTE may contain a read-only bit that indicates whether the

corresponding page is read-only, or can be modified by the process

• if a process attempts to access an invalid page, or violates a protection rule, the

MMU raises an exception, which is handled by the kernel

The kernel controls which pages are valid and which are protected by setting

the contents of PTEs and/or MMU registers.
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Summary: Roles of the Kernel and the MMU

• Kernel:

– manage MMU state on address space switches (context switch from thread

in one process to thread in a different process)

– create and manage page tables

– manage (allocate/deallocate) physical memory

– handle exceptions raised by the MMU

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for and raise exceptions when necessary
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Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory

operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation (for

page table entry lookup) for each memory operation performed during

instruction execution

– Simple address translation through a page table can cut instruction execution

rate in half.

– More complex translation schemes (e.g., multi-level paging) are even more

expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup
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TLB

• Each entry in the TLB contains a (page number, frame number) pair.

• If address translation can be accomplished using a TLB entry, access to the

page table is avoided.

– This is called a TLB hit.

• Otherwise, translate through the page table.

– This is called a TLB miss.

• TLB lookup is much faster than a memory access. TLB is an associative

memory - page numbers of all entries are checked simultaneously for a match.

However, the TLB is typically small (typically hundreds, e.g. 128, or 256

entries).

• If the MMU cannot distinguish TLB entries from different address spaces, then

the kernel must clear or invalidate the TLB on each address space switch.

(Why?)
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TLB Management

• A TLB may be hardware-controlled or software-controlled

• In a hardware-controlled TLB, when there is a TLB miss:

– The MMU (hardware) finds the frame number by performing a page table

lookup, translates the virtual address, and adds the translation (page number,

frame number pair) to the TLB.

– If the TLB is full, the MMU evicts an entry to make room for the new one.

• In a software-controlled TLB, when there is a TLB miss:

– the MMU simply causes an exception, which triggers the kernel exception

handler to run

– the kernel must determine the correct page-to-frame mapping and load the

mapping into the TLB (evicting an entry if the TLB is full), before returning

from the exception

– after the exception handler runs, the MMU retries the instruction that caused

the exception.
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The MIPS R3000 TLB

• The MIPS has a software-controlled TLB that can hold 64 entries.

• Each TLB entry includes a virtual page number, a physical frame number, an

address space identifier (not used by OS/161), and several flags (valid,

read-only).

• OS/161 provides low-level functions for managing the TLB:

TLB Write: modify a specified TLB entry

TLB Read: read a specified TLB entry

TLB Probe: look for a page number in the TLB

• If the MMU cannot translate a virtual address using the TLB it raises an

exception, which must be handled by OS/161.

See kern/arch/mips/include/tlb.h
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What is in a Virtual Address Space?

0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data

0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

This diagram illustrates the layout of the virtual address space for the OS/161

test application user/testbin/sort
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Address Translation In OS/161: dumbvm

• OS/161 starts with a very simple virtual memory implementation

• virtual address spaces are described by addrspace objects, which record the
mappings from virtual to physical addresses

struct addrspace {

#if OPT_DUMBVM

vaddr_t as_vbase1; /* base virtual address of code segment */

paddr_t as_pbase1; /* base physical address of code segment */

size_t as_npages1; /* size (in pages) of code segment */

vaddr_t as_vbase2; /* base virtual address of data segment */

paddr_t as_pbase2; /* base physical address of data segment */

size_t as_npages2; /* size (in pages) of data segment */

paddr_t as_stackpbase; /* base physical address of stack */

#else

/* Put stuff here for your VM system */

#endif

};

• Notice that each segment must be mapped contiguously into physical memory.
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Address Translation Under dumbvm

• the MIPS MMU tries to translate each virtual address using the entries in the

TLB

• If there is no valid entry for the page the MMU is trying to translate, the MMU

generates a TLB fault (called an address exception)

• The vm fault function (see kern/arch/mips/vm/dumbvm.c) handles

this exception for the OS/161 kernel. It uses information from the current

process’ addrspace to construct and load a TLB entry for the page.

• On return from exception, the MIPS retries the instruction that caused the

exception. This time, it may succeed.

vm fault is not very sophisticated. If the TLB fills up, OS/161 will crash!
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Address Translation: OS/161 dumbvm Example

Variable/Field Process 1 Process 2

as vbase1 0x0040 0000 0x0040 0000

as pbase1 0x0020 0000 0x0050 0000

as npages1 0x0000 0008 0x0000 0002

as vbase2 0x1000 0000 0x1000 0000

as pbase2 0x0080 0000 0x00A0 0000

as npages2 0x0000 0010 0x0000 0008

as stackpbase 0x0010 0000 0x00B0 0000

Process 1 Process 2

Virtual addr 0x0040 0004 0x0040 0004

Physical addr = ___________ ? ___________ ?

Virtual addr 0x1000 91A4 0x1000 91A4

Physical addr = ___________ ? ___________ ?

Virtual addr 0x7FFF 41A4 0x7FFF 41A4

Physical addr = ___________ ? ___________ ?

Virtual addr 0x7FFF 32B0 0x2000 41BC

Physical addr = ___________ ? ___________ ?
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Initializing an Address Space

• When the kernel creates a process to run a particular program, it must create an

address space for the process, and load the program’s code and data into that

address space

OS/161 pre-loads the address space before the program runs. Many other

OS load pages on demand. (Why?)

• A program’s code and data is described in an executable file, which is created

when the program is compiled and linked

• OS/161 (and some other operating systems) expect executable files to be in ELF

(Executable and Linking Format) format

• The OS/161 execv system call re-initializes the address space of a process

int execv(const char *program, char **args)

• The program parameter of the execv system call should be the name of the

ELF executable file for the program that is to be loaded into the address space.
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ELF Files

• ELF files contain address space segment descriptions, which are useful to the

kernel when it is loading a new address space

• the ELF file identifies the (virtual) address of the program’s first instruction

• the ELF file also contains lots of other information (e.g., section descriptors,

symbol tables) that is useful to compilers, linkers, debuggers, loaders and other

tools used to build programs
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Address Space Segments in ELF Files

• The ELF file contains a header describing the segments and segment images.

• Each ELF segment describes a contiguous region of the virtual address space.

• The header includes an entry for each segment which describes:

– the virtual address of the start of the segment

– the length of the segment in the virtual address space

– the location of the start of the segment image in the ELF file (if present)

– the length of the segment image in the ELF file (if present)

• the image is an exact copy of the binary data that should be loaded into the

specified portion of the virtual address space

• the image may be smaller than the address space segment, in which case the rest

of the address space segment is expected to be zero-filled

To initialize an address space, the OS/161 kernel copies segment images

from the ELF file to the specifed portions of the virtual address space.
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ELF Files and OS/161

• OS/161’s dumbvm implementation assumes that an ELF file contains two

segments:

– a text segment, containing the program code and any read-only data

– a data segment, containing any other global program data

• the ELF file does not describe the stack (why not?)

• dumbvm creates a stack segment for each process. It is 12 pages long, ending at

virtual address 0x7fffffff

Look at kern/syscall/loadelf.c to see how OS/161 loads segments

from ELF files
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ELF Sections and Segments

• In the ELF file, a program’s code and data are grouped together into sections,

based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data

• not all of these sections are present in every ELF file

• normally

– the .text and .rodata sections together form the text segment

– the .data, .bss and .sbss sections together form the data segement

• space for local program variables is allocated on the stack when the program

runs
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The user/uw-testbin/segments.c Example Program (1 of 2)

#include <unistd.h>

#define N (200)

int x = 0xdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const *str = "Hello World\n";

const int z = 0xabcddcba;

struct example {

int ypos;

int xpos;

};
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The user/uw-testbin/segments.c Example Program (2 of 2)

int

main()

{

int count = 0;

const int value = 1;

t1 = N;

t2 = 2;

count = x + t1;

t2 = z + t2 + value;

reboot(RB_POWEROFF);

return 0; /* avoid compiler warnings */

}

CS350 Operating Systems Winter 2015



Virtual Memory 31

ELF Sections for the Example Program

Section Headers:

[Nr] Name Type Addr Off Size Flg

[ 0] NULL 00000000 000000 000000

[ 1] .text PROGBITS 00400000 010000 000200 AX

[ 2] .rodata PROGBITS 00400200 010200 000020 A

[ 3] .reginfo MIPS_REGINFO 00400220 010220 000018 A

[ 4] .data PROGBITS 10000000 020000 000010 WA

[ 5] .sbss NOBITS 10000010 020010 000014 WAp

[ 6] .bss NOBITS 10000030 020010 004000 WA

...

Flags: W (write), A (alloc), X (execute), p (processor specific)

## Size = number of bytes (e.g., .text is 0x200 = 512 bytes

## Off = offset into the ELF file

## Addr = virtual address

The cs350-readelf program can be used to inspect OS/161 MIPS ELF

files: cs350-readelf -a segments
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ELF Segments for the Example Program

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

REGINFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R 0x4

LOAD 0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000

LOAD 0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

• segment info, like section info, can be inspected using the cs350-readelf

program

• the REGINFO section is not used

• the first LOAD segment includes the .text and .rodata sections

• the second LOAD segment includes .data, .sbss, and .bss
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Contents of the Example Program’s .text Section

Contents of section .text:

400000 3c1c1001 279c8000 2408fff8 03a8e824 <...’...$......$

...

## Decoding 3c1c1001 to determine instruction

## 0x3c1c1001 = binary 111100000111000001000000000001

## 0011 1100 0001 1100 0001 0000 0000 0001

## instr | rs | rt | immediate

## 6 bits | 5 bits| 5 bits| 16 bits

## 001111 | 00000 | 11100 | 0001 0000 0000 0001

## LUI | 0 | reg 28| 0x1001

## LUI | unused| reg 28| 0x1001

## Load upper immediate into rt (register target)

## lui gp, 0x1001

The cs350-objdump program can be used to inspect OS/161 MIPS ELF

file section contents: cs350-objdump -s segments
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Contents of the Example Program’s .rodata Section

Contents of section .rodata:

400200 abcddcba 00000000 00000000 00000000 ................

400210 48656c6c 6f20576f 726c640a 00000000 Hello World.....

...

## const int z = 0xabcddcba

## If compiler doesn’t prevent z from being written,

## then the hardware could.

## 0x48 = ’H’ 0x65 = ’e’ 0x0a = ’\n’ 0x00 = ’\0’

The .rodata section contains the “Hello World” string literal and the con-

stant integer variable z.
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Contents of the Example Program’s .data Section

Contents of section .data:

10000000 deadbeef 00400210 00000000 00000000 .....@..........

...

## Size = 0x10 bytes = 16 bytes (padding for alignment)

## int x = deadbeef (4 bytes)

## char const *str = "Hello World\n"; (4 bytes)

## address of str = 0x10000004

## value stored in str = 0x00400210.

## NOTE: this is the address of the start

## of the string literal in the .rodata section

The .data section contains the initialized global variables str and x.
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Contents of the Example Program’s .bss and .sbss Sections

...

10000000 D x

10000004 D str

10000010 S t3 ## S indicates sbss section

10000014 S t2

10000018 S t1

1000001c S errno

10000020 S __argv

10000030 B array ## B indicates bss section

10004030 A _end

10008000 A _gp

The t1, t2, and t3 variables are in the .sbss section. The array variable

is in the .bss section. There are no values for these variables in the ELF file,

as they are uninitialized. The cs350-nm program can be used to inspect

symbols defined in ELF files: cs350-nm -n <filename>, in this case

cs350-nm -n segments.

CS350 Operating Systems Winter 2015



Virtual Memory 37

An Address Space for the Kernel

• Each process has its own address space. What about the kernel?

• Three possibilities:

Kernel in physical space: disable address translation in privileged system

execution mode, enable it in unprivileged mode

Kernel in separate virtual address space: need a way to change address

translation (e.g., switch page tables) when moving between privileged and

unprivileged code

Kernel mapped into portion of address space of every process: OS/161,

Linux, and other operating systems use this approach

– memory protection mechanism is used to isolate the kernel from

applications

– one advantage of this approach: application virtual addresses (e.g.,

system call parameters) are easy for the kernel to use
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The Kernel in Process’ Address Spaces

Process 1 Process 2

Address Space Address Space

Kernel

(shared, protected)

Attempts to access kernel code/data in user mode result in memory protec-

tion exceptions, not invalid address exceptions.
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Address Translation on the MIPS R3000

2 GB
user space kernel space

2 GB

TLB mapped

0x00000000 0xffffffff0x80000000

0xa0000000

0xc0000000

kseg0 kseg1 kseg2kuseg

1 GB0.5GB0.5GB

unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and data structures live

in kseg0, devices are accessed through kseg1, and kseg2 is not used.
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The Problem of Sparse Address Spaces

0x00400000 − 0x00401a0c

growth

text (program code) and read−only data

data

0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

• Consider the page table for user/testbin/sort, assuming a 4 Kbyte page:

– need 219 page table entries (PTEs) to cover the bottom half of the virtual

address space (2GB).

– the text segment occupies 2 pages, the data segment occupies 289 pages,

and OS/161 sets the initial stack size to 12 pages, so there are only 303 valid

pages (of 219).

• If dynamic relocation is used, the kernel will need to map a 2GB address space

contiguously into physical memory, even though only a tiny fraction of that

address space is actually used by the program.

• If paging is used, the kernel will need to create a page table with 219 PTEs,

almost all of which are marked as not valid.
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Handling Sparse Address Spaces

• Use dynamic relocation, but provide separate base and length for each valid

segment of the address space. Do not map the rest of the address space.

– OS/161 dumbvm uses a simple variant of this idea, which depends on

having a software-managed TLB.

– A more general approach is segmentation.

• A second approach is to use multi-level paging

– replace the single large linear page table with a hierarchy of smaller page

tables

– a sparse address space can be mapped by a sparse tree hierarchy

– easier to manage several smaller page tables than one large one (remember:

each page table must be continguous in physical memory!)
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Segmentation

• Often, programs (like sort) need several virtual address segments, e.g, for

code, data, and stack.

• With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

• Each segment also has a length.
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Segmented Address Space Diagram
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Mechanism for Translating Segmented Addresses

+

segment table

base register

m bits
segment table

length register

T F

address
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exception

seg # offset

v bits

m bits

segment table

protection

size start

virtual address

>

This translation mechanism requires physically contiguous allocation of seg-

ments.
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Address Translation: Segmented Addresses Example

• Virtual addr = 32 bits, physical addr = 32 bits, offset = 28 bits

Segment Table 1 @ 0x0010 0000 Segment Table 2 @ 0x0050 0000

Seg Size Prot Start Seg Size Prot Start

0 0x6000 X- 0x7 0000 0 9000 X- 0x90 0000

1 0x1000 -W 0x6 0000 1 D000 -W 0xAF 0000

2 0xC000 -W 0x5 0000 2 A000 -W 0x70 0000

3 0xB000 -W 0x8 0000

Process 1 Process 2

Seg Table base reg 0x0010 0000 0x0050 0000

Seg Table Len 0x0000 0004 0x0000 0003

Virtual addr 0x0000 2004 0x1000 B481

Physical addr = ___________ ? ___________ ?

Virtual addr 0x2000 31A4 0x2000 B1A4

Physical addr = ___________ ? ___________ ?
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Handling Sparse Paged Virtual Address Spaces

• Large paged virtual address spaces require large page tables.

• example: 248 byte virtual address space, 8 Kbyte (213 byte) pages, 4 byte page

table entries means

248

213
22 = 237 bytes per page table

• page tables for large address spaces may be very large, and

– they must be in memory, and

– they must be physically contiguous

CS350 Operating Systems Winter 2015



Virtual Memory 47

Two-Level Paging
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offsetpage # page #

address

T F

offset
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page table

page tables

m bits

page table
base register
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exception
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Address Translation: Two-Level Paging Example

• Bits: Virtual addr = 32, physical addr = 32, level 1 = 4, level 2 = 12

Level 1 Level 2 Level 2 Level 2

0x0010 0000 0x0005 0000 0x0004 0000 0x0007 0000

S Len Address P Frame P Frame P Frame

0 3 0x7 0000 0 0x8001 0 0x4001 0 0x200A

1 3 0x5 0000 1 0x9005 1 0x7005 1 0x200B

2 4 0x4 0000 2 0x6ADD 2 0x7A00 2 0x200C

3 0x1023

... ... ... ...

Base register 0x0010 0000 0x0010 0000

Level 1 Len 0x0000 0003 0x0000 0003

Virtual addr 0x1000 2004 0x3004 020F

Physical addr = ___________ ? ___________ ?

Virtual addr 0x2003 31A4 0x1003 20A8

Physical addr = ___________ ? ___________ ?

Virtual addr 0x0002 A049

Physical addr = ___________ ?
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Combining Segmentation and Paging
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Proc 2

Proc 1 

segment 1

segment 0

segment 2

2
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Combining Segmentation and Paging: Translation Mechanism

segment table

segment table

length register

page table

length

page #seg # offset

v bits

virtual address

m bits

offsetframe #

physical address

page table

m bits

address

exception

T F

protection

page table

base addr

base register

segment table

>
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Address Translation: Segmentation and Paging Example

• Bits: Virtual addr = 32, physical addr = 32, Segment = 8, Page = 8

Segment Table 1 Page Table Page Table Page Table

0x0020 0000 0x0003 0000 0x0001 0000 0x0002 0000

S Len Prot Address P Frame P Frame P Frame

0 3 X- 0x3 0000 0 0x8001 0 0x4001 0 0x200A

1 4 -W 0x1 0000 1 0x9005 1 0x7005 1 0x200B

2 3 -W 0x2 0000 2 0x6ADD 2 0x7A00 2 0x200C

3 0x1023

Base register 0x0010 0000 0x0010 0000

Seg Table Len 0x0000 0003 0x0000 0003

Virtual addr 0x0100 2004 0x0102 C104

Physical addr = ___________ ? ___________ ?

Virtual addr 0x0203 31A4 0x0304 020F

Physical addr = ___________ ? ___________ ?

Virtual addr 0x0002 A049 0x0104 20A8

Physical addr = ___________ ? ___________ ?
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Exploiting Secondary Storage

Goals:

• Allow virtual address spaces that are larger than the physical address space.

• Allow greater multiprogramming levels by using less of the available (primary)

memory for each process.

Method:

• Allow pages (or segments) from the virtual address space to be stored in

secondary storage, e.g., on disks, as well as primary memory.

• Move pages (or segments) between secondary storage and primary memory so

that they are in primary memory when they are needed.
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Paging Policies

When to Page?:

Demand paging brings pages into memory when they are used. Alternatively,

the OS can attempt to guess which pages will be used, and prefetch them.

What to Replace?:

Unless there are unused frames, one page must be replaced for each page that is

loaded into memory. A replacement policy specifies how to determine which

page to replace.

Similar issues arise if (pure) segmentation is used, only the unit of data trans-

fer is segments rather than pages. Since segments may vary in size, segmen-

tation also requires a placement policy, which specifies where, in memory, a

newly-fetched segment should be placed.
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Page Faults

• When paging is used, some valid pages may be loaded into memory, and some

may not be.

• To account for this, each PTE may contain a present bit, to indicate whether the

page is or is not loaded into memory

– V = 1, P = 1: page is valid and in memory (no exception occurs)

– V = 1, P = 0: page is valid, but is not in memory (exception!)

– V = 0, P = x: invalid page (exception!)

• If V = 0, or if V = 1 and P = 0, the MMU will generate an exception if a

process tries to access the page. This is called a page fault.

• To handle a page fault, the kernel operating system must:

– bring the missing page into memory, set P = 1 in the PTE

– while the missing page is being loaded, the faultin process is blocked

– return from the exception

• the processor will then retry the instrution that caused the page fault
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Page Faults in OS/161

• things are a bit different in systems with software-managed TLBs, such as

OS/161 on the MIPS processor

• MMUs with software-managed TLBs never check page tables, and thus do not

interpret P bits in page table entries

• In an MMU with a software-managed TLB, either there is a valid translation for

a page in the TLB, or there is not.

– If there is not, the MMU generates an exception. It is up to the kernel to

determine the reason for the exception. Is this:

∗ an access to a valid page that is not in memory (a page fault)?

∗ an access to a valid page that is in memory?

∗ an access to an invalid page?

– The kernel should ensure that a page has a translation in the TLB only if the

page is valid and in memory. (Why?)
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A Simple Replacement Policy: FIFO

• the FIFO policy: replace the page that has been in memory the longest

• a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x
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Optimal Page Replacement

• There is an optimal page replacement policy for demand paging.

• The OPT policy: replace the page that will not be referenced for the longest

time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

• OPT requires knowledge of the future.
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Other Replacement Policies

• FIFO is simple, but it does not consider:

Frequency of Use: how often a page has been used?

Recency of Use: when was a page last used?

Cleanliness: has the page been changed while it is in memory?

• The principle of locality suggests that usage ought to be considered in a

replacement decision.

• Cleanliness may be worth considering for performance reasons.
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Locality

• Locality is a property of the page reference string. In other words, it is a

property of programs themselves.

• Temporal locality says that pages that have been used recently are likely to be

used again.

• Spatial locality says that pages “close” to those that have been used are likely to

be used next.

In practice, page reference strings exhibit strong locality. Why?
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Least Recently Used (LRU) Page Replacement

• LRU is based on the principle of temporal locality: replace the page that has not

been used for the longest time

• To implement LRU, it is necessary to track each page’s recency of use. For

example: maintain a list of in-memory pages, and move a page to the front of

the list when it is used.

• Although LRU and variants have many applications, true LRU is difficult to

implement in virtual memory systems. (Why?)
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Least Recently Used: LRU

• the same three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e c c c

Frame 2 b b b a a a a a a d d

Frame 3 c c c b b b b b b e

Fault ? x x x x x x x x x x
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The “Use” Bit

• A use bit (or reference bit) is a bit found in each page table entry that:

– is set by the MMU each time the page is used, i.e., each time the MMU

translates a virtual address on that page

– can be read and cleared by the operating system

• The use bit provides a small amount of efficiently-maintainable usage

information that can be exploited by a page replacement algorithm.
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The Clock Replacement Algorithm

• The clock algorithm (also known as “second chance”) is one of the simplest

algorithms that exploits the use bit.

• Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

• The clock algorithm can be visualized as a victim pointer that cycles through

the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames
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Page Cleanliness: the “Modified” Bit

• A page is modified (sometimes called dirty) if it has been changed since it was

loaded into memory.

• A modified page is more costly to replace than a clean page. (Why?)

• The MMU identifies modified pages by setting a modified bit in page table entry

of a page when a process writes to a virtual address on that page, i.e., when the

page is changed.

• The operating system can clear the modified bit when it cleans the page

• The modified bit potentially has two roles:

– Indicates which pages need to be cleaned.

– Can be used to influence the replacement policy.
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How Much Physical Memory Does a Process Need?

• Principle of locality suggests that some portions of the process’s virtual address

space are more likely to be referenced than others.

• A refinement of this principle is the working set model of process reference

behaviour.

• According to the working set model, at any given time some portion of a

program’s address space will be heavily used and the remainder will not be.

The heavily used portion of the address space is called the working set of the

process.

• The working set of a process may change over time.

• The resident set of a process is the set of pages that are located in memory.

According to the working set model, if a process’s resident set includes its

working set, it will rarely page fault.
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Resident Set Sizes (Example)

PID VSZ RSS COMMAND

805 13940 5956 /usr/bin/gnome-session

831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11

838 6964 2292 gnome-smproxy

840 14720 5008 gnome-settings-daemon

848 8412 3888 sawfish

851 34980 7544 nautilus

853 19804 14208 gnome-panel

857 9656 2672 gpilotd

867 4608 1252 gnome-name-service
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Thrashing and Load Control

• What is a good multiprogramming level?

– If too low: resources are idle

– If too high: too few resources per process

• A system that is spending too much time paging is said to be thrashing.

Thrashing occurs when there are too many processes competing for the

available memory.

• Thrashing can be cured by load shedding, e.g.,

– Killing processes (not nice)

– Suspending and swapping out processes (nicer)
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Swapping Out Processes

• Swapping a process out means removing all of its pages from memory, or

marking them so that they will be removed by the normal page replacement

process. Suspending a process ensures that it is not runnable while it is swapped

out.

• Which process(es) to suspend?

– low priority processes

– blocked processes

– large processes (lots of space freed) or small processes (easier to reload)

• There must also be a policy for making suspended processes ready when system

load has decreased.
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