
File Systems 1

Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– file may change size over time

– file has associated meta-data

∗ examples: owner, access controls, file type, creation and access

timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed, . . .

CS350 Operating Systems Winter 2016

File Systems 2

File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in

subsequent operations to identify the file. (Why is this done?)

• read, write, seek

– read copies data from a file into a virtual address space

– write copies data from a virtual address space into a file

– seek enables non-sequential reading/writing

• get/set file meta-data, e.g., Unix fstat, chmod

CS350 Operating Systems Winter 2016

File Systems 3

File Read

��
��
��

��
��
�� ���

���
���
���

���
���
���
���

virtual address
 space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)

CS350 Operating Systems Winter 2016

File Systems 4

File Position

• each file descriptor (open file) has an associated file position

• read and write operations

– start from the current file position

– update the current file position

• this makes sequential file I/O easy for an application to request

• for non-sequential (random) file I/O, use:

– a seek operation (lseek) to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unix pread, pwrite:

pread(fileId,vaddr,length,filePosition)

CS350 Operating Systems Winter 2016

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.

CS350 Operating Systems Winter 2016

File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=1; i<=100; i++) {

lseek(f,(100-i)*512,SEEK_SET);

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time, in reverse order.

CS350 Operating Systems Winter 2016

File Systems 7

File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second 512 byte chunk of a file, until 50 have been read.

CS350 Operating Systems Winter 2016

File Systems 8

Directories and File Names

• A directory maps file names (strings) to i-numbers

– an i-number is a unique (within a file system) identifier for a file or directory

– given an i-number, the file system can find the data and meta-data for the file

• Directories provide a way for applications to group related files

• Since directories can be nested, a filesystem’s directories can be viewed as a

tree, with a single root directory.

• In a directory tree, files are leaves

• Files may be identified by pathnames, which describe a path through the

directory tree from the root directory to the file, e.g.:

/home/user/courses/cs350/notes/filesys.pdf

• Directories also have pathnames

• Applications refer to files using pathnames, not i-numbers

CS350 Operating Systems Winter 2016

File Systems 9

Hierarchical Namespace Example

= directory

= file

Key

x
y

z

a

b
ck l

f g

a b

CS350 Operating Systems Winter 2016

File Systems 10

Hard Links

• a hard link is an association between a name (string) and an i-number

– each entry in a directory is a hard link

• when a file is created, so is a hard link to that file

– open(/a/b/c,O CREAT|O TRUNC)

– this creates a new file if a file called /a/b/c does not already exist

– it also creates a hard link to the file in the directory /a/b

• Once a file is created, additional hard links can be made to it.

– example: link(/x/b,/y/k/h) creates a new hard link h in directory

/y/k. The link refers to the i-number of file /x/b, which must exist.

• linking to an existing file creates a new pathname for that file

– each file has a unique i-number, but may have multiple pathnames

• Not possible to link to a directory (to avoid cycles)

CS350 Operating Systems Winter 2016

File Systems 11

Unlinking and Referential Integrity

• hard links can be removed:

– unlink(/x/b)

• the file system ensures that hard links have referential integrity, which means

that if the link exists, the file that it refers to also exists.

– When a hard link is created, it refers to an existing file.

– There is no system call to delete a file. Instead, a file is deleted when its last

hard link is removed.

CS350 Operating Systems Winter 2016

File Systems 12

Symbolic Links

• a symbolic link, or soft link, is an association between a name (string) and a

pathname.

– symlink(/z/a,/y/k/m) creates a symbolic link m in directory /y/k.

The symbolic link refers to the pathname /z/a.

• If an application attempts to open /y/k/m, the file system will

1. recognize /y/k/m as a symbolic link, and

2. attempt to open /z/a instead

• referential integrity is not preserved for symbolic links

– in the example above, /z/a need not exist!

CS350 Operating Systems Winter 2016

File Systems 13

UNIX/Linux Link Example (1 of 3)

% cat > file1

This is file1.

<cntl-d>

% ls -li

685844 -rw------- 1 user group 15 2008-08-20 file1

% ln file1 link1

% ln -s file1 sym1

% ln not-here link2

ln: not-here: No such file or directory

% ln -s not-here sym2

Files, hard links, and soft/symbolic links.

CS350 Operating Systems Winter 2016

File Systems 14

UNIX/Linux Link Example (2 of 3)

% ls -li

685844 -rw------- 2 user group 15 2008-08-20 file1

685844 -rw------- 2 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat file1

This is file1.

% cat link1

This is file1.

% cat sym1

This is file1.

% cat sym2

cat: sym2: No such file or directory

% /bin/rm file1

Accessing and manipulating files, hard links, and soft/symbolic links.

CS350 Operating Systems Winter 2016

File Systems 15

UNIX/Linux Link Example (3 of 3)

% ls -li

685844 -rw------- 1 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat link1

This is file1.

% cat sym1

cat: sym1: No such file or directory

% cat > file1

This is a brand new file1.

<cntl-d>

% ls -li

685847 -rw------- 1 user group 27 2008-08-20 file1

685844 -rw------- 1 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat link1

This is file1.

% cat sym1

This is a brand new file1.

Different behaviour for hard links and soft/symbolic links.

CS350 Operating Systems Winter 2016

File Systems 16

Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS/Windows: use two-part file names: file system name, pathname within

file system

– example: C:\user\cs350\schedule.txt

Unix: create single hierarchical namespace that combines the namespaces of

two file systems

– Unix mount system call does this

• mounting does not make two file systems into one file system

– it merely creates a single, hierarchical namespace that combines the

namespaces of two file systems

– the new namespace is temporary - it exists only until the file system is

unmounted

CS350 Operating Systems Winter 2016

File Systems 17

Unix mount Example

a

q

rx

g

a

q

rx

g

"root" file system file system X

result of mount (file system X, /x/a)

x y
z

a
b

ck la b

x y
z

a
b

ck la b

CS350 Operating Systems Winter 2016

File Systems 18

Links and Multiple File Systems

• hard links cannot cross file system boundaries

– each hard link maps a name to an i-number, which is unique only within a

file system

• for example, even after the mount operation illustrated on the previous slide,

link(/x/a/x/g,/z/d) would result in an error, because the new link,

which is in the root file system refers to an object in file system X

• soft links do not have this limitation

• for example, after the mount operation illustrated on the previous slide:

– symlink(/x/a/x/g,/z/d) would succeed

– open(/z/d) would succeed, with the effect of opening /z/a/x/g.

• even if the symlink operation were to occur before the mount command, it

would succeed

CS350 Operating Systems Winter 2016

File Systems 19

File System Implementation

• what needs to be stored persistently?

– file data

– file meta-data

– directories and links

– file system meta-data

• non-persistent information

– open files per process

– file position for each open file

– cached copies of persistent data

CS350 Operating Systems Winter 2016

File Systems 20

File System Example

• Use an extremely small disk as an example:

– 256 KB disk!

– Most disks have a sector size of 512 bytes

∗ Memory is usually byte addressable

∗ Disk is usually “sector addressable”

– 512 total sectors on this disk

• Group every 8 consecutive sectors into a block

– Better spatial locality (fewer seeks)

– Reduces the number of block pointers (we’ll see what this means soon)

– 4 KB block is a convenient size for demand paging

– 64 total blocks on this disk

CS350 Operating Systems Winter 2016

File Systems 21

VSFS: Very Simple File System (1 of 5)

• Most of the blocks should be for storing user data (last 56 blocks)

CS350 Operating Systems Winter 2016

File Systems 22

VSFS: Very Simple File System (2 of 5)

• Need some way to map files to data blocks

• Create an array of i-nodes, where each i-node contains the meta-data for a file

– The index into the array is the file’s index number (i-number)

• Assume each i-node is 256 bytes, and we dedicate 5 blocks for i-nodes

– This allows for 80 total i-nodes/files

CS350 Operating Systems Winter 2016

File Systems 23

VSFS: Very Simple File System (3 of 5)

• We also need to know which i-nodes and blocks are unused

• Many ways of doing this:

– In VSFS, we use a bitmap for each

– Can also use a free list instead of a bitmap

• A block size of 4 KB means we can track 32K i-nodes and 32K blocks

– This is far more than we actually need

CS350 Operating Systems Winter 2016

File Systems 24

VSFS: Very Simple File System (4 of 5)

• Reserve the first block as the superblock

• A superblock contains meta-information about the entire file system

– e.g., how many i-nodes and blocks are in the system, where the i-node table

begins, etc.

CS350 Operating Systems Winter 2016

File Systems 25

VSFS: Very Simple File System (5 of 5)

CS350 Operating Systems Winter 2016

File Systems 26

i-nodes

• An i-node is a fixed size index structure that holds both file meta-data and a

small number of pointers to data blocks

• i-node fields include:

– file type

– file permissions

– file length

– number of file blocks

– time of last file access

– time of last i-node update, last file update

– number of hard links to this file

– direct data block pointers

– single, double, and triple indirect data block pointers

CS350 Operating Systems Winter 2016

File Systems 27

VSFS: i-node

• Assume disk blocks can be referenced based on a 4 byte address

– 2
32 blocks, 4 KB blocks

– Maximum disk size is 16 TB

• In VSFS, an i-node is 256 bytes

– Assume there is enough room for 12 direct pointers to blocks

– Each pointer points to a different block for storing user data

– Pointers are ordered: first pointer points to the first block in the file, etc.

• What is the maximum file size if we only have direct pointers?

– 12 * 4 KB = 48 KB

• Great for small files (which are common)

• Not so great if you want to store big files

CS350 Operating Systems Winter 2016

File Systems 28

VSFS: Indirect Blocks

• In addition to 12 direct pointers, we can also introduce an indirect pointer

– An indirect pointer points to a block full of direct pointers

• 4 KB block of direct pointers = 1024 pointers

– Maximum file size is: (12 + 1024) * 4 KB = 4144 KB

• Better, but still not enough

• Add a double indirect pointer

– Points to a 4 KB block of indirect pointers

– (12 + 1024 + 1024 * 1024) * 4 KB

– Just over 4 GB in size (is this enough?)

CS350 Operating Systems Winter 2016

File Systems 29

i-node Diagram

attribute values

single indirect

direct
direct
direct

data blocks

double indirect

triple indirect

indirect blocks

i−node (not to scale!)

CS350 Operating Systems Winter 2016

File Systems 30

File System Design

• File system parameters:

– How many i-nodes should a file system have?

– How many direct and indirect blocks should an i-node have?

– What is the “right” block size?

• For a general purpose file system, design it to be efficient for the common case

CS350 Operating Systems Winter 2016

File Systems 31

Directories

• Implemented as a special type of file.

• Directory file contains directory entries, each consisting of

– a file name (component of a path name) and the corresponding i-number

• Directory files can be read by application programs (e.g., ls)

• Directory files are only updated by the kernel, in response to file system

operations, e.g, create file, create link

• Application programs cannot write directly to directory files. (Why not?)

CS350 Operating Systems Winter 2016

File Systems 32

Implementing Hard Links

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

1. find out the internal file identifier for /y/k/g

2. create a new entry in directory /z

– file name in new entry is m

– file identifier (i-number) in the new entry is the one discovered in step 1

CS350 Operating Systems Winter 2016

File Systems 33

Implementing Soft Links

• soft links can be implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a new symlink file

– add a new entry in directory /z

∗ file name in new entry is m

∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the new symlink file

CS350 Operating Systems Winter 2016

File Systems 34

Free Space Management

• Use the bitmaps to find a free i-node and free blocks

– Each bit represents the availability of an i-node or block

• There are often many free blocks to choose from

– To improve spatial locality and reduce fragementation, a file system may

want to select a free block that is followed by a sequence of other free blocks

CS350 Operating Systems Winter 2016

File Systems 35

Reading From a File (/foo/bar)

• First read the root i-node

– At “well known” position (i-node 2)

– i-node 1 is usually for tracking bad blocks

CS350 Operating Systems Winter 2016

File Systems 36

Reading From a File (/foo/bar)

• Read the directory information from root

– Find the i-number for foo

– Read the foo i-node

CS350 Operating Systems Winter 2016

File Systems 37

Reading From a File (/foo/bar)

• Read the directory information from foo

– Find the i-number for bar

– Read the bar i-node

CS350 Operating Systems Winter 2016

File Systems 38

Reading From a File (/foo/bar)

• Permission check (is the user allowed to read this file?)

• Allocate a file descriptor in the per-process descriptor table

• Increment the counter for this i-number in the global open file table

CS350 Operating Systems Winter 2016

File Systems 39

Reading From a File (/foo/bar)

• Find the block using a direct/indirect pointer and read the data

• Update the i-node with a new access time

• Update the file position in the per-process descriptor table

• Closing a file deallocates the file descriptor and decrements the counter for this

i-number in the global open file table

CS350 Operating Systems Winter 2016

File Systems 40

Creating a File (/foo/bar)

CS350 Operating Systems Winter 2016

File Systems 41

In-Memory (Non-Persistent) Structures

• per process

– descriptor table

∗ which file descriptors does this process have open?

∗ to which file does each open descriptor refer?

∗ what is the current file position for each descriptor?

• system wide

– open file table

∗ which files are currently open (by any process)?

– i-node cache

∗ in-memory copies of recently-used i-nodes

– block cache

∗ in-memory copies of data blocks and indirect blocks

CS350 Operating Systems Winter 2016

File Systems 42

Chaining

• VSFS uses a per-file index (direct and indirect pointers) to access blocks

• Two alternative approaches:

– Chaining:

∗ Each block includes a pointer to the next block

– External chaining:

∗ The chain is kept as an external structure

∗ Microsoft’s File Allocation Table (FAT) uses external chaining

CS350 Operating Systems Winter 2016

File Systems 43

Chaining

• Directory table contains the name of the file, and each file’s starting block

• Acceptable for sequential access, very slow for random access (why?)

CS350 Operating Systems Winter 2016

File Systems 44

External Chaining

• Introduces a special file access table that specifies all of the file chains

external chain
(file access table)

CS350 Operating Systems Winter 2016

File Systems 45

Log-Structured File System (LFS)

• LFS is built on a very different set of assumptions:

– Memory sizes are growing

∗ Most reads will be served from cache

∗ Reads therefore are fast and do not require any seeks

– Large gap between random I/O and sequential I/O performance

• Main idea: Make all writes sequential writes

CS350 Operating Systems Winter 2016

File Systems 46

Log-Structured File System

• Write data block D at address A0

• Write i-node I for the file and point it to block D

• The next block write will be placed after i-node I

• To overwrite data, just write a new block and i-node at the next position

CS350 Operating Systems Winter 2016

File Systems 47

Log-Structured File System

• Write buffering is used to collect multiple writes to the same file together

– Reduces the number of i-nodes that need to be written

CS350 Operating Systems Winter 2016

File Systems 48

Log-Structured File System

• Problem:

– How do we find the i-node for a file on a cache miss?

• i-node map (imap) takes an i-node number as an input, and returns the disk

address of the most recent version of the i-node

• Write a portion of the i-node map every time an i-node is updated

• How do we find the i-node maps?

– Maintain a periodically updated checkpoint region with pointers to the latest

imaps

– Checkpoint region always updated during graceful shutdown

CS350 Operating Systems Winter 2016

File Systems 49

Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because of a failure, some but not all of these changes are reflected on

the disk?

• system failure will destroy in-memory file system structures

• persistent structures should be crash consistent, i.e., should be consistent

when system restarts after a failure

CS350 Operating Systems Winter 2016

File Systems 50

Fault Tolerance

• special-purpose consistency checkers (e.g., Unix fsck in Berkeley FFS, Linux

ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry

∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences of

changes can be written to disk in a single operation

– after changes have been journaled, update the disk data structures

(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before the

failure

CS350 Operating Systems Winter 2016

