Scheduling 1

Job Scheduling Model

e problem scenario: a set of jobs needs to be executed using a single server, on
which only one job at a time may run

e for the ith job, we have an arrival time a; and a run time 7;

e after the 7th job has run on the server for total time r;, it finishes and leaves the
system

e ajob scheduler decides which job should be running on the server at each point
in time
e let s; (s; > a;) represent the time at which the ith job first runs, and let f;
represent the time at which the ¢th job finishes
— the turnaround time of the ith job is f; — a;

— the response time of the ith job is s; — a;

CS350 Operating Systems Winter 2016

Scheduling 2

Basic Non-Preemptive Schedulers: FCFS and SJF

e FCFS: runs jobs in arrival time order.
— simple, avoids starvation

— pre-emptive variant: round-robin

e SJF: shortest job first - run jobs in increasing order of r;
— minimizes average furnaround time
— long jobs may starve

— pre-emptive variant: SRTF (shortest remaining time first)

CS350 Operating Systems Winter 2016

Scheduling 3

FCFS Gantt Chart Example

L p—
R g | I % %
B —
A —
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1 [J2]3])4
arrival (a;) 0O]0]|O0]S
runtime (r;) || 5 | 8 | 3 | 2
CS350 Operating Systems Winter 2016
Scheduling 4
SJF Example
il | —
2| ee—
33 g g
A —
: : : : : : : : : : : > time
0 4 8 12 16 20
Job J1 [J2]3])4

arrival (a;) 0O]0]O0]S5
runtime (r;) || 5 | 8 | 3 | 2

CS350 Operating Systems Winter 2016

Scheduling

Round Robin Example

NIk

J2

. . —

time

0 4 8 12 16

20

>

Job J1 1J2 |13

J4

arrival (a;) 0]01]O0

runtime (r;) || 5 | 8 | 3

CS350 Operating Systems

Winter 2016

Scheduling

SRTF Example

J1

J2

. . —

time

0 4 8 12 16

>

20

Job J1 1J2 |13

J4

arrival (a;) 0]01]O0

runtime (r;) || 5 | 8 | 3

CS350 Operating Systems

Winter 2016

Scheduling 7

CPU Scheduling

e CPU scheduling is job scheduling where:
— the server is a CPU (or a single core of a multi-core CPU)

— the jobs are ready threads
* a thread “arrives” when it becomes ready, i.e., when it is first created, or

when it wakes up from sleep
% the run-time of the thread is the amount of time that it will run before it

either finishes or blocks

— thread run times are typically not known in advance by the scheduler

e typical scheduler objectives
— responsiveness - low response time for some or all threads
— “fair” sharing of the CPU

— efficiency - there is a cost to switching

CS350 Operating Systems Winter 2016

Scheduling 8

Prioritization

e CPU schedulers are often expected to consider process or thread priorities

e priorities may be
— specified by the application (e.g., Linux
setpriority/sched_setscheduler)
— chosen by the scheduler

— some combination of these

e two approaches to scheduling with priorites
1. schedule the highest priority thread

2. weighted fair sharing
— let p; be the priority of the ¢th thread
— try to give each thread a “share” of the CPU in proportion to its priority:

Di
1
Zj pj M

CS350 Operating Systems Winter 2016

Scheduling 9

Multi-level Feedback Queues

e objective: good responsiveness for interactive processes
— threads of interactive processes block frequently, have short run times
e idea: gradually diminish priority of threads with long run times and infrequent
blocking
— if a thread blocks before its quantum is used up, raise its priority

— if a thread uses its entire quantum, lower its priority

CS350 Operating Systems Winter 2016

Scheduling 10

Multi-level Feedback Queues (Algorithm)

e scheduler maintains several round-robin ready queues

— highest priority threads in queue (), lower priority in ()1, still lower in ()2,

and so on.
e scheduler always chooses thread from the lowest non-empty queue
e threads in queue (); use quantum ¢;, and ¢; < ¢g; if 1 < j
e newly ready threads go into ready queue ()

e alevel i thread that is preempted goes into queue Q; 11

This basic algorithm may starve threads in lower queues. Various enhance-
ments can avoid this, e.g, periodically migrate all threads into Q).

CS350 Operating Systems Winter 2016

Scheduling 11

3 Level Feedback Queue State Diagram

blocked

unblock

CS350 Operating Systems Winter 2016

Scheduling 12

Linux Completely Fair Scheduler (CFS) - Key Ideas

e “Completely Fair Scheduling” - a weighted fair sharing approach

e suppose that ¢; is the actual amount of time that the scheduler has allowed the
tth thread to run.

S S
= Cl =
Po p1

e on an ideally shared processor, we would expect cg

>, P

(3

e CFS calls ¢;
thread

the virtual runtime of the ¢th thread, and tracks it for each

e CFS chooses the thread with the lowest virtual runtime, and runs it until some
other thread’s virtual runtime is lower (subject to a minimum runtime quantum)

— virtual runtime advances more slowly for higher priority threads, so they get
longer time slices

— all ready threads run regularly, so good responsiveness

CS350 Operating Systems Winter 2016

Scheduling 13

Scheduling on Multi-Core Processors

()
core |e—
(. J
()
core |e—
(. J
()
core |e—
(. J
()]
core |e—
— L
per core ready queue(s) Vs. shared ready queue(s)
CS350 Operating Systems Winter 2016
Scheduling 14

Scalability and Cache Affinity

e Contention and Scalability
— access to shared ready queue is a critical section, mutual exclusion needed
— as number of cores grows, contention for ready queue becomes a problem

— per core design scales to a larger number of cores

e CPU cache affinity
— as thread runs, data it accesses is loaded into CPU cache(s)

— moving the thread to another core means data must be reloaded into that

core’s caches
— as thread runs, it acquires an affinity for one core because of the cached data
— per core design benefits from affinity by keeping threads on the same core

— shared queue design does not

CS350 Operating Systems Winter 2016

Scheduling 15

Load Balancing

e in per-core design, queues may have different lengths

e this results in load imbalance across the cores
— cores may be idle while others are busy
— threads on lightly loaded cores get more CPU time than threads on heavily
loaded cores
e not an issue in shared queue design
e per-core designs typically need some mechanism for thread migration to
address load imbalances

— migration means moving threads from heavily loaded cores to lightly loaded
cores

CS350 Operating Systems Winter 2016

