
Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on uniprocessors.

CS350 Operating Systems Winter 2016



Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a variety of ways:

– Threads share access, through the operating system, to system devices (more

on this later . . .)

– Threads may share access to program data, e.g., global variables.

• A common synchronization problem is to enforce mutual exclusion, which

means making sure that only one thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed is called a critical

section.

CS350 Operating Systems Winter 2016



Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

} }

If one thread executes add and another executes sub what is the value of

total when they have finished?

CS350 Operating Systems Winter 2016



Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

CS350 Operating Systems Winter 2016



Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

<INTERRUPT>

sw R9 0(R8) total=1

One possible order of execution.

CS350 Operating Systems Winter 2016



Synchronization 6

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

<INTERRUPT>

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

sub R11 1 R11=-1

sw R11 0(R10) total=-1

Another possible order of execution. Many interleavings of instructions are

possible. Synchronization is required to ensure a correct ordering.

CS350 Operating Systems Winter 2016



Synchronization 7

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

add R9 1 sub R11 1

} }

sw R9 0(R8) sw R11 0(R10)

} }

Without volatile the compiler could optimize the code. If one thread executes

add and another executes sub, what is the value of total when they have

finished?

CS350 Operating Systems Winter 2016



Synchronization 8

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

add R9 N sub R11 N

sw R9 0(R8) sw R11 0(R10)

} }

The compiler could aggressively optimize the code. Volatile tells the com-

piler that the object may change for reasons which cannot be determined

from the local code (e.g., due to interaction with a device or because of an-

other thread).

CS350 Operating Systems Winter 2016



Synchronization 9

The use of volatile

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

The volatile declaration forces the compiler to load and store the value on

every use. Using volatile is necessary but not sufficient for correct behaviour.

Mutual exclusion is also required to ensure a correct ordering of instructions.

CS350 Operating Systems Winter 2016



Synchronization 10

Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Allow one thread to execute and make others wait

total++; total--;

Permit one waiting thread to continue execution

} }

} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Winter 2016



Synchronization 11

Another Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;

list element *element;

assert(!is empty(lp));

element = lp->first;

num = lp->first->item;

if (lp->first == lp->last) {
lp->first = lp->last = NULL;

} else {
lp->first = element->next;

}
lp->num_in_list--;

free(element);

return num;

}

The list remove front function is a critical section. It may not work

properly if two threads call it at the same time on the same list. (Why?)

CS350 Operating Systems Winter 2016



Synchronization 12

Another Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

The list append function is part of the same critical section as

list remove front. It may not work properly if two threads call

it at the same time, or if a thread calls it while another has called

list remove front

CS350 Operating Systems Winter 2016



Synchronization 13

Enforcing Mutual Exclusion

• mutual exclusion algorithms ensure that only one thread at a time executes the

code in a critical section

• several techniques for enforcing mutual exclusion

– exploit special hardware-specific machine instructions, e.g.,

∗ test-and-set,

∗ compare-and-swap, or

∗ load-link / store-conditional,

that are intended for this purpose

– control interrupts to ensure that threads are not preempted while they are

executing a critical section

CS350 Operating Systems Winter 2016



Synchronization 14

Disabling Interrupts

• On a uniprocessor, only one thread at a time is actually running.

• If the running thread is executing a critical section, mutual exclusion may be

violated if

1. the running thread is preempted (or voluntarily yields) while it is in the

critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters

the same critical section that the preempted thread was in

• Since preemption is caused by timer interrupts, mutual exclusion can be

enforced by disabling timer interrupts before a thread enters the critical section,

and re-enabling them when the thread leaves the critical section.

CS350 Operating Systems Winter 2016



Synchronization 15

Interrupts in OS/161

This is one way that the OS/161 kernel enforces mutual exclusion on a single

processor. There is a simple interface

• spl0() sets IPL to 0, enabling all interrupts.

• splhigh() sets IPL to the highest value, disabling all interrupts.

• splx(s) sets IPL to S, enabling whatever state S represents.

These are used by splx() and by the spinlock code.

• splraise(int oldipl, int newipl)

• spllower(int oldipl, int newipl)

• For splraise, NEWIPL > OLDIPL, and for spllower, NEWIPL < OLDIPL.

See kern/include/spl.h and kern/thread/spl.c

CS350 Operating Systems Winter 2016



Synchronization 16

Pros and Cons of Disabling Interrupts

• advantages:

– does not require any hardware-specific synchronization instructions

– works for any number of concurrent threads

• disadvantages:

– indiscriminate: prevents all preemption, not just preemption that would

threaten the critical section

– ignoring timer interrupts has side effects, e.g., kernel unaware of passage of

time. (Worse, OS/161’s splhigh() disables all interrupts, not just timer

interrupts.) Keep critical sections short to minimize these problems.

– will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Winter 2016



Synchronization 17

Hardware-Specific Synchronization Instructions

• a test-and-set instruction atomically sets the value of a specified memory

location and either places that memory location’s old value into a register

• abstractly, a test-and-set instruction works like the following function:

TestAndSet(addr,value)

old = *addr; // get old value at addr

*addr = value; // write new value to addr

return old;

these steps happen atomically

• example: x86 xchg instruction:

xchg src,dest

where src is typically a register, and dest is a memory address. Value in

register src is written to memory at address dest, and the old value at dest

is placed into src.

CS350 Operating Systems Winter 2016



Synchronization 18

Alternatives to Test-And-Set

• Compare-And-Swap

CompareAndSwap(addr,expected,value)

old = *addr; // get old value at addr

if (old == expected) *addr = value;

return old;

• example: SPARC cas instruction

cas addr,R1,R2

if value at addr matches value in R1 then swap contents of addr and R2

• load-linked and store-conditional

– Load-linked returns the current value of a memory location, while a

subsequent store-conditional to the same memory location will store a new

value only if no updates have occurred to that location since the load-linked.

– more on this later . . .

CS350 Operating Systems Winter 2016



Synchronization 19

A Spin Lock Using Test-And-Set

• a test-and-set instruction can be used to enforce mutual exclusion

• for each critical section, define a lock variable, in memory

boolean volatile lock; /* shared, initially false */

We will use the lock variable to keep track of whether there is a thread in the

critical section, in which case the value of lock will be true

• before a thread can enter the critical section, it does the following:

while (TestAndSet(&lock,true)) { } /* busy-wait */

• when the thread leaves the critical section, it does

lock = false;

• this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known as a spin lock, since a thread “spins” in

the while loop until the critical section is free.

CS350 Operating Systems Winter 2016



Synchronization 20

Spinlocks in OS/161

struct spinlock {

volatile spinlock_data_t lk_lock; /* word for spin */

struct cpu *lk_holder; /* CPU holding this lock */

};

void spinlock_init(struct spinlock *lk);

void spinlock_cleanup(struct spinlock *lk);

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

bool spinlock_do_i_hold(struct spinlock *lk);

Spinning happens in spinlock acquire

CS350 Operating Systems Winter 2016



Synchronization 21

Spinlocks in OS/161

spinlock_init(struct spinlock *lk)

{

spinlock_data_set(&lk->lk_lock, 0);

lk->lk_holder = NULL;

}

void spinlock_cleanup(struct spinlock *lk)

{

KASSERT(lk->lk_holder == NULL);

KASSERT(spinlock_data_get(&lk->lk_lock) == 0);

}

void spinlock_data_set(volatile spinlock_data_t *sd,

unsigned val)

{

*sd = val;

}

CS350 Operating Systems Winter 2016



Synchronization 22

Acquiring a Spinlock in OS/161

void spinlock_acquire(struct spinlock *lk)

{

/* note: code that sets lk->holder has been removed! */

splraise(IPL_NONE, IPL_HIGH);

while (1) {

/* Do test-and-test-and-set to reduce bus contention */

if (spinlock_data_get(&lk->lk_lock) != 0) {

continue;

}

if (spinlock_data_testandset(&lk->lk_lock) != 0) {

continue;

}

break;

}

}

CS350 Operating Systems Winter 2016



Synchronization 23

Using Load-Linked / Store-Conditional

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

/* Test-and-set using LL/SC.

* Load the existing value into X, and use Y to store 1.

* After the SC, Y contains 1 if the store succeeded,

* 0 if it failed. On failure, return 1 to pretend

* that the spinlock was already held.

*/

y = 1;

CS350 Operating Systems Winter 2016



Synchronization 24

Using Load-Linked / Store-Conditional (Part 2)

__asm volatile(

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) {

return 1;

}

return x;

}

CS350 Operating Systems Winter 2016



Synchronization 25

Releasing a Spinlock in OS/161

void spinlock_release(struct spinlock *lk)

{

/* Note: code that sets lk->holder has been removed! */

spinlock_data_set(&lk->lk_lock, 0);

spllower(IPL_HIGH, IPL_NONE);

}

CS350 Operating Systems Winter 2016



Synchronization 26

Pros and Cons of Spinlocks

• Pros:

– can be efficient for short critical sections

– works on multiprocessors

• Cons:

– CPU is busy (nothing else runs) while waiting for lock

– starvation is possible

CS350 Operating Systems Winter 2016



Synchronization 27

Thread Blocking

• Sometimes a thread will need to wait for an event. For example, if a thread

needs to access a critical section that is busy, it must wait for the critical section

to become free before it can enter

• other examples that we will see later on:

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• With spinlocks, threads busy wait when they cannot enter a critical section. This

means that a processor is busy doing useless work. If a thread may need to wait

for a long time, it would be better to avoid busy waiting.

• To handle this, the thread scheduler can block threads.

• A blocked thread stops running until it is signaled to wake up, allowing the

processor to run some other thread.

CS350 Operating Systems Winter 2016



Synchronization 28

Thread Blocking in OS/161

• OS/161 thread library functions for blocking and unblocking threads:

– void wchan lock(struct wchan *wc);

– void wchan unlock(struct wchan *wc);

∗ locks/unlocks the wait channel wc

– void wchan sleep(struct wchan *wc);

∗ blocks calling thread on wait channel wc

∗ channel must be locked, will be unlocked upon return

– void wchan wakeall(struct wchan *wc);

∗ unblock all threads sleeping on wait channel wc

– void wchan wakeone(struct wchan *wc);

∗ unblock one thread sleeping on wait channel wc

Note: current implementation is FIFO but not promised by the interface

CS350 Operating Systems Winter 2016



Synchronization 29

Thread Blocking in OS/161

• wchan sleep() is much like thread yield(). The calling thread is

voluntarily giving up the CPU, so the scheduler chooses a new thread to run, the

state of the running thread is saved and the new thread is dispatched. However:

– after a thread yield(), the calling thread is ready to run again as soon

as it is chosen by the scheduler

– after a wchan sleep(), the calling thread is blocked, and must not be

scheduled to run again until after it has been explicitly unblocked by a call

to wchan wakeone() or wchan wakeall().

CS350 Operating Systems Winter 2016



Synchronization 30

Thread States

• a very simple thread state transition diagram

ready

blocked

dispatch

need resource or eventgot resource or event

running

quantum expires
or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Winter 2016



Synchronization 31

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than 0, decrement the value. Otherwise,

wait until the value is greater than 0 and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores: can take on any non-negative value

binary semaphores: take on only the values 0 and 1. (V on a binary

semaphore with value 1 has no effect.)

By definition, the P and V operations of a semaphore are atomic.

CS350 Operating Systems Winter 2016



Synchronization 32

Mutual Exclusion Using a Semaphore

struct semaphore *s;

s = sem create("MySem1", 1); /* initial value is 1 */

P(s); /* do this before entering critical section */

critical section /* e.g., call to list remove front */

V(s); /* do this after leaving critical section */

CS350 Operating Systems Winter 2016



Synchronization 33

A Simple Example using Semaphores

volatile int total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }

} }

What type of semaphore can be used for sem?

CS350 Operating Systems Winter 2016



Synchronization 34

OS/161 Semaphores

struct semaphore {

char *sem name;

struct wchan *sem wchan;

struct spinlock sem lock;

volatile int sem count;

};

struct semaphore *sem create(const char *name,

int initial count);

void P(struct semaphore *s);

void V(struct semaphore *s);

void sem destroy(struct semaphore *s);

see kern/include/synch.h and kern/thread/synch.c

CS350 Operating Systems Winter 2016



Synchronization 35

OS/161 Semaphores: P() from kern/thread/synch.c

P(struct semaphore *sem)

{

KASSERT(sem != NULL);

KASSERT(curthread->t in interrupt == false);

spinlock acquire(&sem->sem lock);

while (sem->sem count == 0) {

/* Note: we don’t maintain strict FIFO ordering */

wchan lock(sem->sem wchan);

spinlock release(&sem->sem lock);

wchan sleep(sem->sem wchan);

spinlock acquire(&sem->sem lock);

}

KASSERT(sem->sem count > 0);

sem->sem count--;

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Winter 2016



Synchronization 36

OS/161 Semaphores: V() from kern/thread/synch.c

V(struct semaphore *sem)

{

KASSERT(sem != NULL);

spinlock acquire(&sem->sem lock);

sem->sem count++;

KASSERT(sem->sem count > 0);

wchan wakeone(sem->sem wchan);

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Winter 2016



Synchronization 37

Producer/Consumer Synchronization

• suppose we have threads that add items to a list (producers) and threads that

remove items from the list (consumers)

• suppose we want to ensure that consumers do not consume if the list is empty -

instead they must wait until the list has something in it

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization, as shown on the next

slide

CS350 Operating Systems Winter 2016



Synchronization 38

Producer/Consumer Synchronization using Semaphores

struct semaphore *s;

s = sem create("Items", 0); /* initial value is 0 */

Producer’s Pseudo-code:

add item to the list (call list append())

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from the list (call list remove front())

The Items semaphore does not enforce mutual exclusion on the list. If we

want mutual exclusion, we can also use semaphores to enforce it. (How?)

CS350 Operating Systems Winter 2016



Synchronization 39

Bounded Buffer Producer/Consumer Synchronization

• suppose we add one more requirement: the number of items in the list should

not exceed N

• producers that try to add items when the list is full should be made to wait until

the list is no longer full

• We can use an additional semaphore to enforce this new constraint:

– semaphore Occupied is used to count the number of occupied entries in

the list (to ensure nothing is consumed if there are no occupied entries)

– semaphore Unoccupied is used to count the number of unoccupied entries

in the list (to ensure nothing is produced if there are no unoccupied entries)

struct semaphore *Occupied;

struct semaphore *Unoccupied;

occupied = sem create("Occupied", 0); /* initially = 0 */

unoccupied = sem create("Unoccupied", N); /* initially = N */

CS350 Operating Systems Winter 2016



Synchronization 40

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo-code:

P(unoccupied);

add item to the list (call list append())

V(occupied);

Consumer’s Pseudo-code:

P(occupied);

remove item from the list (call list remove front())

V(unoccupied);

CS350 Operating Systems Winter 2016



Synchronization 41

OS/161 Locks

• OS/161 also uses a synchronization primitive called a lock. Locks are intended

to be used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• A lock is similar to a binary semaphore with an initial value of 1. However,

locks also enforce an additional constraint: the thread that releases a lock must

be the same thread that most recently acquired it.

• The system enforces this additional constraint to help ensure that locks are used

as intended.

CS350 Operating Systems Winter 2016



Synchronization 42

Condition Variables

• OS/161 supports another common synchronization primitive: condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only used from within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associated

with the condition variable. Once the thread is unblocked it reacquires the

lock.

signal: If threads are blocked on the signaled condition variable, then one of

those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the

condition variable.

CS350 Operating Systems Winter 2016



Synchronization 43

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the two conditions are:

– count > 0 (condition variable notempty)

– count < N (condition variable notfull)

• when a condition is not true, a thread can wait on the corresponding condition

variable until it becomes true

• when a thread detects that a condition is true, it uses signal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that has no

waiters has no effect. Signals do not accumulate.

CS350 Operating Systems Winter 2016



Synchronization 44

Waiting on Condition Variables

• when a blocked thread is unblocked (by signal or broadcast), it

reacquires the lock before returning from the wait call

• a thread is in the critical section when it calls wait, and it will be in the critical

section when wait returns. However, in between the call and the return, while

the caller is blocked, the caller is out of the critical section, and other threads

may enter.

• In particular, the thread that calls signal (or broadcast) to wake up the

waiting thread will itself be in the critical section when it signals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from the wait call.

This describes Mesa-style condition variables, which are used in OS/161.

There are alternative condition variable semantics (Hoare semantics), which

differ from the semantics described here.

CS350 Operating Systems Winter 2016



Synchronization 45

Bounded Buffer Producer Using Locks and Condition Variables

int volatile count = 0; /* must initially be 0 */

struct lock *mutex; /* for mutual exclusion */

struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);

while (count == N) {
cv wait(notfull, mutex);

}
add item to buffer (call list append())

count = count + 1;

cv signal(notempty, mutex);

lock release(mutex);

}

CS350 Operating Systems Winter 2016



Synchronization 46

Bounded Buffer Consumer Using Locks and Condition Variables

itemType Consume() {

lock acquire(mutex);

while (count == 0) {

cv wait(notempty, mutex);

}

remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex);

lock release(mutex);

return(item);

}

Both Produce() and Consume() call cv wait() inside of a while

loop. Why?

CS350 Operating Systems Winter 2016



Synchronization 47

Deadlocks

• Suppose there are two threads and two locks, lockA and lockB, both initially

unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 does lock acquire(lockA).

2. Thread 2 does lock acquire(lockB).

3. Thread 1 does lock acquire(lockB) and blocks, because lockB is

held by thread 2.

4. Thread 2 does lock acquire(lockA) and blocks, because lockA is

held by thread 1.

These two threads are deadlocked - neither thread can make progress. Wait-

ing will not resolve the deadlock. The threads are permanently stuck.

CS350 Operating Systems Winter 2016



Synchronization 48

Deadlocks (Another Simple Example)

• Suppose a machine has 64 MB of memory. The following sequence of events

occurs.

1. Thread A starts, requests 30 MB of memory.

2. Thread B starts, also requests 30 MB of memory.

3. Thread A requests an additional 8 MB of memory. The kernel blocks thread

A since there is only 4 MB of available memory.

4. Thread B requests an additional 5 MB of memory. The kernel blocks thread

B since there is not enough memory available.

These two threads are deadlocked.

CS350 Operating Systems Winter 2016



Synchronization 49

Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has

resources allocated to it. A thread may hold several resources, but to do so it

must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually

not possible). Thread is restarted when it can acquire all the resources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require that each

thread acquire resources in increasing resource type order. That is, a thread may

make no requests for resources of type less than or equal to i if it is holding

resources of type i.

CS350 Operating Systems Winter 2016



Synchronization 50

Deadlock Detection and Recovery

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover from

the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

threads involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can

simply test periodically. Deadlocks persist, so periodic detection will not

“miss” them.

Deadlock detection and deadlock recovery are both costly. This approach

makes sense only if deadlocks are expected to be infrequent.

CS350 Operating Systems Winter 2016


