
Threads and Concurrency 1

Threads and Concurrency

key concepts

threads, concurrent execution, timesharing, context switch, interrupts, preemption

reading

Three Easy Pieces: Chapter 26 (Concurrency and Threads)

CS350 Operating Systems Winter 2018



Threads and Concurrency 2

What is a Thread?

• Threads provide a way for programmers to express concurrency in a program.

• A normal sequential program consists of a single thread of execution.

• In threaded concurrent programs there are multiple threads of execution, all

occuring at the same time.

CS350 Operating Systems Winter 2018



Threads and Concurrency 3

OS/161 Threaded Concurrency Examples

• Key ideas from the examples:

– A thread can create new threads using thread fork

– New theads start execution in a function specified as a parameter to

thread fork

– The original thread (which called thread fork and the new thread

(which is created by the call to thread fork) proceed concurrently, as

two simultaneous sequential threads of execution.

– All threads share access to the program’s global variables and heap.

– Each thread’s function activations are private to that thread.

CS350 Operating Systems Winter 2018



Threads and Concurrency 4

OS/161’s Thread Interface

• create a new thread:

int thread_fork(

const char *name, // name of new thread

struct proc *proc, // thread’s process

void (*func) // new thread’s function

(void *, unsigned long),

void *data1, // function’s first param

unsigned long data2 // function’s second param

);

• terminate the calling thread:

void thread_exit(void);

• volutarily yield execution:

void thread_yield(void);

See kern/include/thread.h

CS350 Operating Systems Winter 2018



Threads and Concurrency 5

Why Threads?

• Reason #1: parallelism exposed by threads enables parallel execution if the

underlying hardware supports it.

– programs can run faster

• Reason #2: parallelism exposed by threads enables better processor utilization

– if one thread has to block, another may be able to run

CS350 Operating Systems Winter 2018



Threads and Concurrency 6

Review: Sequential Program Execution

memory

CPU register contents

SP PC

codedatastack

The Fetch/Execute Cycle

1. fetch instruction PC points to

2. decode and execute instruction

3. advance PC

CS350 Operating Systems Winter 2018



Threads and Concurrency 7

MIPS Registers

num name use num name use

0 z0 always zero 24-25 t8-t9 temps (caller-save)

1 at assembler reserved 26-27 k0-k1 kernel temps

2 v0 return val/syscall # 28 gp global pointer

3 v1 return value 29 sp stack pointer

4-7 a0-a3 subroutine args 30 s8/fp frame ptr (callee-save)

8-15 t0-t7 temps (caller-save) 31 ra return addr (for jal)

16-23 s0-s7 saved (callee-save)

See kern/arch/mips/include/kern/regdefs.h

CS350 Operating Systems Winter 2018



Threads and Concurrency 8

Review: The Stack

stack growth 

stack frame(s)

FuncA

FuncB

FuncC

FuncA() {

. . .

FuncB();

. . .

}

FuncB() {

. . .

FuncC();

. . .

}

CS350 Operating Systems Winter 2018



Threads and Concurrency 9

Concurrent Program Execution (Two Threads)

SP PC

memory

Thread 1 CPU register contents

SP PC

Thread 2 CPU register contents

codedata
stack

T1
stack

T2

Conceptually, each thread executes sequentially using its private register con-

tents and stack.

CS350 Operating Systems Winter 2018



Threads and Concurrency 10

Implementing Concurrent Threads

• Option 1: multiple processors, multiple cores, hardware multithreading per core

– P processors, C cores per processor, M multhreading degree per core ⇒

PCM threads can execute simultaneously

– separate register set for each running thread, to hold its execution context

• Option 2: timesharing

– multiple threads take turns on the same hardware

– rapidly switch from thread to thread so that all make progress

In practice, both techniques can be combined.

CS350 Operating Systems Winter 2018



Threads and Concurrency 11

Timesharing and Context Switches

• When timesharing, the switch from one thread to another is called a context

switch

• What happens during a context switch:

1. decide which thread will run next (scheduling)

2. save register contents of current thread

3. load register contents of next thread

• Thread context must be saved/restored carefully, since thread execution

continuously changes the context

CS350 Operating Systems Winter 2018



Threads and Concurrency 12

Context Switch on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:

/* a0: address of switchframe pointer of old thread. */

/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)

CS350 Operating Systems Winter 2018



Threads and Concurrency 13

Context Switch on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

.end switchframe_switch

CS350 Operating Systems Winter 2018



Threads and Concurrency 14

What Causes Context Switches?

• the running thread calls thread yield

– running thread voluntarily allows other threads to run

• the running thread calls thread exit

– running thread is terminated

• the running thread blocks, via a call to wchan sleep

– more on this later . . .

• the running thread is preempted

– running thread involuntarily stops running

CS350 Operating Systems Winter 2018



Threads and Concurrency 15

OS/161 Thread Stack after Voluntary Context Switch (thread yield())

stack growth

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

(switchframe)

stack frame(s)

CS350 Operating Systems Winter 2018



Threads and Concurrency 16

Thread States

ready

blocked

dispatch

need resource or eventgot resource or event

running

or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

preemption

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Winter 2018



Threads and Concurrency 17

Preemption

• without preemption, a running thread could potentially run forever, without

yielding, blocking, or exiting

• preemption means forcing a running thread to stop running, so that another

thread can have a chance

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the running

thread has not called a thread library function

• this is normally accomplished using interrupts

CS350 Operating Systems Winter 2018



Threads and Concurrency 18

Review: Interrupts

• an interrupt is an event that occurs during the execution of a program

• interrupts are caused by system devices (hardware), e.g., a timer, a disk

controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed

location in memory

• at that memory location, the thread library places a procedure called an

interrupt handler

• the interrupt handler normally:

1. create a trap frame to record thread context at the time of the interrupt

2. determines which device caused the interrupt and performs device-specific

processing

3. restores the saved thread context from the trap frame and resumes execution

of the thread

CS350 Operating Systems Winter 2018



Threads and Concurrency 19

OS/161 Thread Stack after in Interrupt

stack growth 

interrupt handling
stack frame(s)

trap frame

stack frame(s)

CS350 Operating Systems Winter 2018



Threads and Concurrency 20

Preemptive Scheduling

• A preemptive scheduler imposes a limit, called the scheduling quantum on how

long a thread can run before being preempted.

• The quantum is an upper bound on the amount of time that a thread can run. It

may block or yield before its quantum has expired.

• Periodic timer interrupts allow running time to be tracked.

• If a thread has run too long, the timer interrupt handler preempts the thread by

calling thread yield.

• The preempted thread changes state from running to ready, and it is placed on

the ready queue.

OS/161 threads use preemptive round-robin scheduling.

CS350 Operating Systems Winter 2018



Threads and Concurrency 21

OS/161 Thread Stack after Preemption

stack growth 

thread_switch()
stack frame

(switchframe)

stack frame

interrupt handling
stack frame(s)

thread_yield() 

trap frame

saved thread context

stack frame(s)

CS350 Operating Systems Winter 2018



Threads and Concurrency 22

Two-Thread Example (Part 1)

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 1 is running, thread two had previously yielded voluntarily.

CS350 Operating Systems Winter 2018



Threads and Concurrency 23

Two-Thread Example (Part 2)

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

INTERRUPT!

A time interrupt occurs! Interrupt handler runs.

CS350 Operating Systems Winter 2018



Threads and Concurrency 24

Two-Thread Example (Part 3)

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Interrupt handler decides Thread 1 quantum has expired.

CS350 Operating Systems Winter 2018



Threads and Concurrency 25

Two-Thread Example (Part 4)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Scheduler chooses Thread 2 to run. Context switch.

CS350 Operating Systems Winter 2018



Threads and Concurrency 26

Two-Thread Example (Part 5)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 2 context is restored.

CS350 Operating Systems Winter 2018



Threads and Concurrency 27

Two-Thread Example (Part 6)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

thread yield finishes, Thread 2 program resumes.

CS350 Operating Systems Winter 2018



Threads and Concurrency 28

Two-Thread Example (Part 7)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Later, Thread 2 yields again. Scheduler chooses Thread 1.

CS350 Operating Systems Winter 2018



Threads and Concurrency 29

Two-Thread Example (Part 8)

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 1 context is restored, interrupt handler resumes.

CS350 Operating Systems Winter 2018



Threads and Concurrency 30

Two-Thread Example (Part 9)

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Interrupt handler restores state from trap frame and returns.

CS350 Operating Systems Winter 2018


