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Threads and Concurrency

key concepts

threads, concurrent execution, timesharing, context switch, interrupts, preemption

reading

Three Easy Pieces: Chapter 26 (Concurrency and Threads)
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What is a Thread?

• Threads provide a way for programmers to express concurrency in a program.

• A normal sequential program consists of a single thread of execution.

• In threaded concurrent programs there are multiple threads of execution, all

occuring at the same time.
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OS/161 Threaded Concurrency Examples

• Key ideas from the examples:

– A thread can create new threads using thread fork

– New theads start execution in a function specified as a parameter to

thread fork

– The original thread (which called thread fork and the new thread

(which is created by the call to thread fork) proceed concurrently, as

two simultaneous sequential threads of execution.

– All threads share access to the program’s global variables and heap.

– Each thread’s function activations are private to that thread.
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OS/161’s Thread Interface

• create a new thread:

int thread_fork(

const char *name, // name of new thread

struct proc *proc, // thread’s process

void (*func) // new thread’s function

(void *, unsigned long),

void *data1, // function’s first param

unsigned long data2 // function’s second param

);

• terminate the calling thread:

void thread_exit(void);

• volutarily yield execution:

void thread_yield(void);

See kern/include/thread.h
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Why Threads?

• Reason #1: parallelism exposed by threads enables parallel execution if the

underlying hardware supports it.

– programs can run faster

• Reason #2: parallelism exposed by threads enables better processor utilization

– if one thread has to block, another may be able to run
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Review: Sequential Program Execution

memory

CPU register contents

SP PC

codedatastack

The Fetch/Execute Cycle

1. fetch instruction PC points to

2. decode and execute instruction

3. advance PC
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MIPS Registers

num name use num name use

0 z0 always zero 24-25 t8-t9 temps (caller-save)

1 at assembler reserved 26-27 k0-k1 kernel temps

2 v0 return val/syscall # 28 gp global pointer

3 v1 return value 29 sp stack pointer

4-7 a0-a3 subroutine args 30 s8/fp frame ptr (callee-save)

8-15 t0-t7 temps (caller-save) 31 ra return addr (for jal)

16-23 s0-s7 saved (callee-save)

See kern/arch/mips/include/kern/regdefs.h
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Review: The Stack

stack growth 

stack frame(s)

FuncA

FuncB

FuncC

FuncA() {

. . .

FuncB();

. . .

}

FuncB() {

. . .

FuncC();

. . .

}
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Concurrent Program Execution (Two Threads)

SP PC

memory

Thread 1 CPU register contents

SP PC

Thread 2 CPU register contents

codedata
stack

T1
stack

T2

Conceptually, each thread executes sequentially using its private register con-

tents and stack.
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Implementing Concurrent Threads

• Option 1: multiple processors, multiple cores, hardware multithreading per core

– P processors, C cores per processor, M multhreading degree per core ⇒

PCM threads can execute simultaneously

– separate register set for each running thread, to hold its execution context

• Option 2: timesharing

– multiple threads take turns on the same hardware

– rapidly switch from thread to thread so that all make progress

In practice, both techniques can be combined.
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Timesharing and Context Switches

• When timesharing, the switch from one thread to another is called a context

switch

• What happens during a context switch:

1. decide which thread will run next (scheduling)

2. save register contents of current thread

3. load register contents of next thread

• Thread context must be saved/restored carefully, since thread execution

continuously changes the context
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Context Switch on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:

/* a0: address of switchframe pointer of old thread. */

/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)
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Context Switch on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

.end switchframe_switch
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What Causes Context Switches?

• the running thread calls thread yield

– running thread voluntarily allows other threads to run

• the running thread calls thread exit

– running thread is terminated

• the running thread blocks, via a call to wchan sleep

– more on this later . . .

• the running thread is preempted

– running thread involuntarily stops running
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OS/161 Thread Stack after Voluntary Context Switch (thread yield())

stack growth

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

(switchframe)

stack frame(s)
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Thread States

ready

blocked

dispatch

need resource or eventgot resource or event

running

or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

preemption

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.
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Preemption

• without preemption, a running thread could potentially run forever, without

yielding, blocking, or exiting

• preemption means forcing a running thread to stop running, so that another

thread can have a chance

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the running

thread has not called a thread library function

• this is normally accomplished using interrupts
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Review: Interrupts

• an interrupt is an event that occurs during the execution of a program

• interrupts are caused by system devices (hardware), e.g., a timer, a disk

controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed

location in memory

• at that memory location, the thread library places a procedure called an

interrupt handler

• the interrupt handler normally:

1. create a trap frame to record thread context at the time of the interrupt

2. determines which device caused the interrupt and performs device-specific

processing

3. restores the saved thread context from the trap frame and resumes execution

of the thread
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OS/161 Thread Stack after in Interrupt

stack growth 

interrupt handling
stack frame(s)

trap frame

stack frame(s)
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Preemptive Scheduling

• A preemptive scheduler imposes a limit, called the scheduling quantum on how

long a thread can run before being preempted.

• The quantum is an upper bound on the amount of time that a thread can run. It

may block or yield before its quantum has expired.

• Periodic timer interrupts allow running time to be tracked.

• If a thread has run too long, the timer interrupt handler preempts the thread by

calling thread yield.

• The preempted thread changes state from running to ready, and it is placed on

the ready queue.

OS/161 threads use preemptive round-robin scheduling.

CS350 Operating Systems Winter 2018



Threads and Concurrency 21

OS/161 Thread Stack after Preemption

stack growth 

thread_switch()
stack frame

(switchframe)

stack frame

interrupt handling
stack frame(s)

thread_yield() 

trap frame

saved thread context

stack frame(s)
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Two-Thread Example (Part 1)

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 1 is running, thread two had previously yielded voluntarily.
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Two-Thread Example (Part 2)

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

INTERRUPT!

A time interrupt occurs! Interrupt handler runs.
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Two-Thread Example (Part 3)

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Interrupt handler decides Thread 1 quantum has expired.
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Two-Thread Example (Part 4)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Scheduler chooses Thread 2 to run. Context switch.
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Two-Thread Example (Part 5)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 2 context is restored.
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Two-Thread Example (Part 6)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

thread yield finishes, Thread 2 program resumes.
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Two-Thread Example (Part 7)

thread_switch

switch frame

thread_yield

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Later, Thread 2 yields again. Scheduler chooses Thread 1.
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Two-Thread Example (Part 8)

interrupt handler

trap frame

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Thread 1 context is restored, interrupt handler resumes.
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Two-Thread Example (Part 9)

thread_switch

switch frame

thread_yield

stack frame(s)
program

Thread 1 Stack

stack frame(s)

Thread 2 Stack

program

Interrupt handler restores state from trap frame and returns.
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