CS350 Operating Systems Winter 2022

A1l - Assignment Specification

1 Introduction

Welcome to the second programming assignment for CS350! In this assignment,
you will implement UNIX-like process management system calls for OS/161 as
your Al kernel space programming component. The Al userspace program-
ming assignment objective is to use Linux system calls to implement a mini shell
as a Linux userspace program.

Some general advice for this assignment:

e Start early. The instructions are detailed, but even debugging simple
mistakes are time consuming. This holds doubly true if you are not espe-
cially familiar with C.

e Compile often. By checking whether the code compiles after every pro-
gramming prompt, explicitly specified in the following sections, you will
be able to pinpoint problems very quickly. The code is should to compile
after every properly implemented programming prompt.

In this assignment, for the A1l - OS/161 kernel programming componenet,
we will use two prompts.

Explore prompts: guide you towards a better understanding of the OS/161
kernel code.

Programming prompts: give you step by step implementation instructions
for implementing the system calls in OS/161. Read these carefully!

2 Prelab-Al: Concept Review - Processes and
System Calls

In this assignment, you are asked to implement several OS/161 process-related
system calls. Before you start implementing system calls, you should review and
understand the lecture material about processes and system calls. We briefly
summarize the related material in this prelab section.

2.1 Processes and System Calls

A process is in essence a running program. A program is just a file, a sequence
of data that holds executable code. In order for the program to actually execute,
the OS loads the executable code in memory and designates it as such. The
OS also reserves space for the data created and used during execution. The OS
then sets up the processor to start executing the program. The processor state

along with this prepared area of memory is called a process. A process also
includes OS resources like open files that it uses for I/0.,

Applications can be implemented as a single process or as multiple pro-
cesses. For multiprocess applications each process can run the same or different
programs. Each process always has its own text (code), data and stack, and
processes communicate with each other using mechanisms such as shared files,
shared memory, and, or signals.

2.2 System Call for Process Creation

In UNIX and similar systems like Linux, users cannot create processes from
scratch. The only way to create a process is by using the fork call from inside
another process. The call creates a duplicate of the calling process, copying the
text (code), data, and stack of the calling process and storing it for the newly
forked process.

The two processes resulting from fork have identical stack, text (code), and
data. If the processes were completely identical, then the call would not be
very useful since both processes would have the exact same input and output.
We would also not be able to use fork to run different programs. For this
reason fork has a different return value for each process. The duplicate process
created, called the child, receives a return value of 0. The original process that
made the call to fork, is called the parent and receives a special identifier called
a process ID (PID) that it can use to refer to the child. Each process has a single
parent, but a process can have multiple children.

As a note, there is an exception to the rule that new processes are only
created by calling fork from existing ones. The kernel itself constructs the
first process manually. We call this initial process the init process, and most
operating systems keep it running for as long as the system is powered on. The
init process has no parent, processes thus form a tree with init at its root.

0S/161 is an exception, since it does not actually have an init process.
Rather, the OS/161 kernel acts as a shell and creates a new userspace pro-
cess for each command. These processes can then create children processes
using fork.

This was a design decision as 0S/161 is an educational OS with most system
calls missing, so that students practice implementing system calls in a kernel, the
0OS/161 kernel, in this case. Creating an init process in OS/161 is impossible
without the essential process creation system calls,which you will implement in
this kernel-side programming assignment.

2.3 System calls for Process Management

PIDs are unique process identifiers that processes can use to communicate with
one another. In this assignment, we use PIDs from parent processes to find
out when a specific child exits. In this way, we can synchronize the different
processes of an application. For example, a popular pattern for applications
is for a parent process to spawn children that each do a single task, then exit

when they are done. The parent waits for the children to exit, then continues
executing with the guarantee that the children processes have finished their
tasks.

We use two system calls to implement this pattern: _exit in the child
process, and waitpid in the parent. When a process exits, it calls _exit to
notify the operating system that it is done. The operating system then frees
some of the resources of the process. The _exit system call also takes in an
integer argument. This argument is typically O for success or an error code in
case of a runtime error.

In OS/161, we will implement the waitpid system call so that, only a parent
process can call waitpid on one of its children using its PID. The waitpid system
call will only check if child has exited and does not check for other state changes
like blocking or continuing execution.This system call will be implemented as a
blocking call so it does not return until the child exits.

In UNIX-like operating systems, such as Linux, the waitpid system call
is versatile and changes depending on the passed arguments. For example,
waitpid can either return immediately if no children have changed state, or it
can block until such a state change occurs. A parent can also monitor either a
specific child by passing its PID, or all children at once by passing -1 as the pid
argument.

3 Prelab-Al: Code Review - OS/161

In this assignment, you are asked to implement several OS/161 process-related
system calls. Before you start implementing system calls, you should review
and understand those parts of the OS/161 kernel that you will be modifying.

This section gives a brief overview of some parts of the kernel that you should
become familiar with.

3.1 kern/syscall

This directory contains the files that are responsible for loading and running
user-level programs, as well as basic and stub implementations of a few system
call handlers.

proc_syscalls.c: This file is intended to hold the handlers for process-related
system calls, including the calls that you are implementing for this assign-
ment. Currently, it contains a partial implementation of a handler for
_exit () and stub handlers for getpid() and waitpid().

runprogram.c: This file contains the implementation of the kernel’s runprogram
command, which can be invoked from the kernel menu. The runprogram
command is used to launch the first process run by the kernel. Typically,
this process will be the ancestor of all other processes in the system.

3.2 kern/arch/mips/

This directory contains machine-specific code for basic kernel functions, such as
handling system calls, exceptions and interrupts, context switches, and virtual
mMemory.

locore/trap.c: This file contains the function mips_trap(), which is the first
kernel C function that is called after an exception, system call, or interrupt
returns control to the kernel. (mips_trap() gets called by the assembly
language exception handler.)

syscall/syscall.c: This file contains the system call dispatcher function,
called syscall(). This function, which is invoked by mips_trap() de-
termines which kind of system call has occured, and calls the appropriate
handler for that type of system call. As provided to you, syscall() will
properly invoke the handlers for a few system calls. However, you will
need to modify this function to invoke your handler for fork(). In this
file, you will also find a stub function called enter_forked_process().
This is intended to be the function that is used to cause a newly-forked
process to switch to user-mode for the first time. When you implement
enter_forked_process(), you will want to call mips_usermode () (from
locore/trap.c) to actually cause the switch from kernel mode to user
mode.

3.3 kern/include

The kern/include directory contains the include files that the kernel needs.
The kern subdirectory contains include files that are visible not only to the
operating system itself, but also to user-level programs. (Think about why it’s
named “kern” and where the files end up when installed.)

3.4 kern/vm

The kern/vm directory contains the machine-independent part of the kernel’s
virtual memory implementation. Although you do not need to modify the vir-
tual memory implementation for this assignment, some functions implemented
here are relevant to the assignment.

copyinout.c: This file contains functions, such as copyin() and copyout for
moving data between kernel space and user space. See the partial imple-
mentations of the handlers for the write() and waitpid() system calls
for examples of how these functions can be used.

3.5 In user

The user directory contains all of the user level applications, which can be
used to test OS/161. Don’t forget that the user level applications are built and

installed separately from the kernel. All of the user programs can be built by
running bmake and then bmake install in the top-level diretory (os161-1.99).

0S/161 comes with a variety of user-level programs that can run on top of
the OS/161 kernel. These include standard UNIX-style utility programs, like
1s and cat, and a variety of test programs. The source files for the utility
programs are located in $0S161T0P/0s161-1.99/user/{bin, sbin}, where the
symbol $0S161TOP refers to the top-level OS/161 directory that was created
when you installed OS/161 into your account. The source files for the user-level
programs that we use as the test programs are located in $05161T0OP/os161-
1.99/user/{uw-testbin,testbin}.

Note that many of the user-level programs in $0S161T0P/0s161-1.99/user/{uw-
testbin,testbin} will not run with current OS/161 distribution, since some
system calls are not implemented in this version of the OS/161 operating system.

User-level programs are installed under $0S161TOP/root/ in the bin sbin,testbin
and uw-testbin directories. You will test your implementation of the system
calls using the following OS/161 user-level test programs:

e uw-testbin/pidcheck
e uw-testbin/widefork

e testbin/forktest

4 A1-0S/161 Kernel System Call Implementa-
tion Requirements

All code changes for this assignment should be enclosed in #if OPT_A1 state-
ments. For example:

#if OPT_A1
// code you created or modified for ASST1 goes here
#else
// old (pre-Al) version of the code goes here,
// and is ignored by the compiler when you compile ASST1
// the ~“else'' part is optional and can be left
// out if you are just inserting new code for ASST1
#endif /x OPT_A1 =/

For this to work, you must add #include "opt-A1l.h" at the top of any file for
which you make changes for this assignment.

If in Assignment 0 you wrapped any new code with #if OPT_AO, it will also
be included in your build when you compile for Assignment 1.

For this assignment, you are expected to implement the following OS/161
system calls:

o fork

e getpid
e waitpid
e _exit

fork enables multiprogramming and makes OS/161 much more useful. _exit
and waitpid are closely related to each other, since _exit allows the terminating
process to specify an exit status code, and waitpid allows another process to ob-
tain that code. You are not required to implement the WAIT_ANY, WAIT_MYPGRP,
WNOHANG, and WUNTRACED flags for waitpid () - see kern/include/kern/wait.h.

To help get you started, there is a partially-implemented handler for _exit
already in place, as well as stub implementatations of handlers for getpid and
waitpid. You will need to complete the implementations of these handlers, and
also create and implement a handler for fork.

There is a man (manual) page for each OS/161 system call. These manual
pages describe the expected behaviour of the system calls and specify the values
expected to be returned by the system calls, including the error numbers that
they may return. You should consider these manual pages to be part
of the specification of this assignment, since they describe the way
that that system calls that you are implementing are expected to
behave. The system call man pages are located in the OS/161 source tree
under os161-1.99/man/syscall. They are also available on-line through the
course web page.

Your system call implementations should correctly and gracefully handle er-
ror conditions, and properly return the error codes as described on the man
pages. This is because application programs, including those used to test your
kernel for this assignment, depend on the behaviour of the system calls as spec-
ified in the man pages.

Under no circumstances should an incorrect system call parameter
cause your kernel to crash.

Integer codes for system calls are listed in kern/include/kern/syscall.h.
The file user/include/unistd.h contains the user-level function prototypes for
0S/161 system calls. These describe how a system call is made from within a
user-level application. The file kern/include/syscall.h contains the kernel’s
prototypes for its internal system call handling functions. You will find proto-
types for the handlers for waitpid, _exit and getpid there. Don’t forget to
add a prototype for your new fork() handler function to this file.

5 Al: OS/161 Kernel Side Programming

In this section, we will guide you through the OS/161 system call programmig
assignment for Al.

https://student.cs.uwaterloo.ca/~cs350/common/os161-man/syscall/

5.1 Implementing getpid

The correct implementation of getpid must return the unique PID of the process
to userspace. To find out how the call works we use the UNIX grep command
line tool to find all references to it, in the kern/ folder of the OS/161 soruce
code, which holds the OS161/kernel code.

grep -r getpid .

./include/kern/syscall.h: #define SYS_getpid 5
./include/syscall.h:int sys_getpid(pid_t *retval);
./syscall/proc_syscalls.c:/* stub handler for getpid() system call */
./syscall/proc_syscalls.c:sys_getpid(pid_t *retval)
./arch/mips/syscall/syscall.c: case SYS_getpid:
./arch/mips/syscall/syscall.c: err = sys_getpid((pid_t *)&retval);

Listing 1: All occurences of sys_getpid in the kernel.
We see that, headers aside, there are only two references to getpid, one in
arch/mips/syscall/syscall.c, and one in syscall/proc_syscalls.c. The
latter file holds the actual definition of the function sys_getpid. The sys_
prefix denotes the function corresponds to a system call. In the former, the
function just gets called by some other function.

Explore: Inspect the occurences of sys_getpid in syscall.c.
e How is the function used?
o What does the calling function do?
o How is the return value of getpid() propagated to userspace?

Hint: What does struct trapframe represent? Find its definition.

The proc_syscalls.c file holds the definition itself. This is the code we need
to change to get getpid working.

/% stub handler for getpid() system call */
int

sys_getpid(pid_t *retval)

{

/* for mow, this is just a stub that always returns a PID of 1 */
/* you need to fiz this to make it work properly x/

*retval = 1;

return (0);

Listing 2: The scaffolding code for the getpid () call.
The starter code right now returns 1 by default. For the call to work it must
instead return the PID of the function. A natural place to store the PID of a
process is the proc instance the kernel uses to store the metadata of the process.

Explore: What is the relation between proc and the process itself? Is the proc
the process itself? Can we theoretically call free on the proc and still run the
process afterwards?

Here is the struct itself:

48 /*
49 * Process structure.

50 */

51 struct proc {

52 char *p_name; /* Name of this process */

53 struct spinlock p_lock; /* Lock for this structure */

54 struct threadarray p_threads; /* Threads in this process */

55

56 /* VM */

57 struct addrspace *p_addrspace; /* virtual address space */

58

59 /* VFS */

60 struct vnode *p_cwd; /* current working directory */
61

62 #ifdef UW

63 /* a vnode to refer to the console device */

64 /* this is a quick-and-dirty way to get console writes working */

65 /* you will probably need to change this when implementing file-related
66 system calls, since each process will need to keep track of all files
67 it has opened, mot just the console. */

68 struct vnode *console; /* a vnode for the console device */
69 #endif

70

71 /* add more material here as needed */

72 };

Listing 3: The proc struct in kern/include/proc.h.
The proc has the following contents.

e p_name: A string holding the name of the process.
e p_lock: A lock for the structure to avoid races.

e p_threads: An array of threads for the process. We will talk about
threads later in the course, but for now suffice to say they hold the CPU
state of the process when the process is not running.

e p_addrspace: A pointer to the address space of the process. We will talk
about address spaces and virtual memory later in the course. For now we
treat address spaces as maps that represent the memory of the process.

e p_cwd, console: Open vnodes for the current working directory and the
serial console. They roughly correspond to open files, and we will talk
about them when we discuss file systems.

The proc structure crucially does not already have a PID field.

Programming: Add a new field called p_pid to proc structure. Return
the value of the field p_pid of the current process from sys_getpid.
Hint: The current process is accessed using the variable curproc.
What should the type of the p_pid be?

Now that we have the field, we must initialize it. Right now there is no mech-
anism to assign PIDs, so we must make one ourselves. The simplest way to
do this is to define a counter that starts from PID_MIN and every time a new
process is created the counter’s value is assigned to the p_pid and the counter

is incremented. The counter must be protected using a binary semaphore that
acts as a lock, which must be held to read and increment the counter.

Programming: Initialize an integer counter, pid_count, and a
semaphore, pid_count_mutex to control access to it.

e Look at how proc_count and proc_count_mutex are being initial-
ized in function proc_bootstrap in kern/proc/proc.c. Initialize
the counter pid_count in the same place. Recall what the start-
ing value of pid_count should be.

Hint: Where is PID_MIN defined, how will you use it in
kern/proc/proc.c.

o Create and initialize the semaphore pid_count_mutex similar to
the way proc_count_mutex has been created and initialized.

e We just added the definitions of the counter and the mutex in
kern/proc/proc.c.

e To successfully use the counter and mutex, you will need to add
the declaration for the variables pid_count and pid_count_mutex.
Hint: where are proc_count and proc_count_mutex declared?
Think: What is the difference between a definition and a decla-
ration in C?

The function proc_create_runprogram, in kern/proc/proc.c, creates new,
initialized instances of proc. We will initialize p_pid for the newly created
processes in this function.

Programming: Initialize p_pid in proc_create_runprogram using the
pid_count counter.

Hint: Look at how proc_count is incremented and how its semaphore,
poc_count_mutex is used to protect access to it.

o Similarly, use pid_count_mutex to protect access to pid_count.
e Assign p_pid a value from the counter pid_count

Make sure to read the counter after P() and before V(). Think: What
are those functions? Where can you find their definition?

We now have a way to allocate PIDs to newly created processes, and can imple-
ment the fork system call to create new processes.

5.2 Implementing fork

Explore how fork is being used in the kernel using grep to search for the system
call macro SYS_fork.

grep -r SYS_fork .
./include/kern/syscall.h: #define SYS_fork 0

Using grep for sys_fork, the expected name for the implementaiton of the
system call, returns nothing. So not only is there no implementation of fork,
the system call number is not used anywhere.

As a first step we will add the stub for the system call in the kernel. We do this
in arch/mips/syscall/syscall.c. In this file there is the syscall function
that is the entry point for all system calls in the kernel. We had a cursory look
at the syscall function during our implementation of getpid. Now we will
study it more closely.

78 void

79 syscall(struct trapframe *tf)

80 {

88

89 callno = tf->tf_vO;

102 switch (callno) {

103 case SYS_reboot:

104 err = sys_reboot(tf->tf_a0);

105 break;

106

107 case SYS___time:

108 err = sys___time ((userptr_t)tf->tf_al,
109 (userptr_t)tf->tf_al);
110 break;

143 if (err) {

144 /*

145 * Return the error code. This gets converted at
146 * userlevel to a return value of -1 and the error
147 * code 1in errno.

148 */

149 tf->tf_v0 = err;

150 tf->tf_a3 = 1; /* signal an error */
151 }

152 else {

153 /* Success. */

154 tf->tf_v0 = retval;

155 tf->tf_a3 = 0; /* signal no error */
156 }

157

158 /*

159 * Now, advance the program counter, to avoid rTestarting
160 * the syscall over and over again.

161 */

162

163 tf->tf_epc += 4;

Listing 4: syscall function in syscall.c

Explore: What does the code outside of the switch statement do? Hint: What
does the trapframe represent? What would be the common functionality needed
by every single system call?

Programming: Adding the definition for sys_fork in
kern/syscall/proc_syscalls.c

¢ Define the function sys_fork.

e It should return an integer.

10

e It should take two arguments:

— an integer pointer to retval, which is going to be used to
return the PID of the child to the parent process.
Hint: Look at the header of waitpid to pass retval correctly
to sys_fork..

— and a pointer to the entire trapframe structure that
was passed to syscall. Hint: The function syscall in
arch/mips/syscall/syscall.c takes an entire pointer to a
trapframe structure.

e Also make sure to add the C declaration to the header file con-
taining all other syscall function declarations. Hint: The header
file with other system call declarations is syscall.h

Programming: In the syscall.c file in the function syscall, add a
case in the switch statement for a call to the new sys_fork function.

e Consider what the system call number is for the case for
sys_fork.
Hint: system call numbers are defined in
/kern/include/kern/syscall.h

e Notice that retval is defined in syscall with type pid_t. What
is the relationship between pid_t and int?

The next step is reasoning about how to actually create the new process. We
currently have a stub function in which we must create a new proc and initialize
it so that it is a copy of the calling process.

The first step is to create the proc struct. Recall, we can do this with the
proc_create_runprogram call that allocates and initializes a new proc struc-
ture. We use this function instead of proc_create because it also takes care of
initializing fields like p_cwd that are not in scope of this programming assign-
ment.

Programming: Call proc_create_runprogram to create a new proc
struct in sys_fork.

Hint: Read the proc_create_runprogram function to see how to create
a proc structure.

Hint: The name of the newly created child process should simply be
the string "child"

We then fill in the struct’s fields with information from the calling process
(parent). First we create a copy of the caller’s address space using as_copy, then
assign it directly to the new process. The PID of the process is already initialized,
since we have added the appropirate code in proc_create_runprogram.

11

Programming: Call as_copy to copy the address space of the current
process and assign it to the newly created proc struct, which repre-
sents the child process.

Hint: Consider using grep to see the declaration, and or definition of
as_copy and understand its arguments.

Hint: Use curproc_getas() to get the address space of the current
process.

Programming: Allocate a new trapframe using kmalloc and copy the
trapframe of curproc into it.

e create a new trapframe structure, suppose trapframe_for_child
that is dynamically allocated using kmalloc, so that it is on the
heap in the kernel

e now copy the contents of the trapframe that was passed to
sys_fork to this trapframe_for_child.

Next step is the trickiest, since we are creating a thread from scratch, but in
0S/161 userspace it must look as if the thread just returned from a successful
fork with a newly forked process. We must also ensure that the new process
”sees” a value of 0 as the return value from fork, in contrast to the caller process
(parent) that "sees” the PID of the new child process.

We use the thread_fork call to create the new thread., which has the prototype
in kern/thread/thread.c:

477 int

478 thread_fork(const char *name,

479 struct proc *proc,

480 void (*entrypoint)(void *datal, unsigned long data2),
481 void *datal, unsigned long data2)

Understanding the thread_fork function is not in the scope of this program-
ming assignment. It is sufficient to know that it creates a new thread in the
kernel, attaches it to the given proc, and starts executing from the entrypoint
function in the kernel. Our goal is to set the right entrypoint function so that
the new thread returns to userspace as if returning from the fork call.

As per the prototype, thread_fork takes the following arguments:

e a name to assign to the thread, you can call this thread any name, e.g.
("child_thread"),

e the proc to which we will attach the thread. This should be the child
process we created using proc_create_runprogram

e an entrypoint function that must take two arguments. We will use
enter_forked_process as the entrypoint function. A stub for it is defined
in arch/mips/syscall/syscall.c. It will take two arguments:

— the trapframe that is identical to that of the parent process

12

— the data2 argument is unused so we can set it to 0

Programming: Call thread_fork with the right arguments.

e Modify the prototype of enter_forked_process so that we can
pass it as an argument to thread_fork.

— The enter_forked_process that is currently declared in
0S/161 does not take two arguments, but thread_fork ex-
pects to call a function that does take two arguments.

— Note, that thread_fork expects an entry point
function to have the following signature: void
(*xentrypoint) (void *datal, unsigned long data2) where
entrypoint for thread_fork from sys_fork should be the
enter_forked_process

We are almost there - we just need to get enter_forked_process to return
to userspace immediately after the fork system call, with 0 as the return
value. To do this we just need to call the function mips_usermode which is
in arch/mips/locore/trap.c. This function loads a trapframe into the CPU
and returns to userspace. We must configure the trapframe correctly, for this
step to work correctly.

In enter_forked_process we have been given a copy of the caller’s trapframe.
Unfortunately, we cannot pass it directly to mips_usermode, because the func-
tion expects the trapframe to be in the stack, and the trapframe is currently on
the heap. To solve this, we declare a struct trapframe in the beginning of the
function. Variable declarations in a C function are allocated on the stack, so we
can now copy the old trapframe, which was passed to enter_forked_process,
into the new one that was declared in the function. We can then kfree on the
former.

We must also modify the trapframe according to the 0S/161 ABI to return
execution in userspace at the right place and with the right return value. To do
this we must

« increment the program counter (tf_epc) by 4, the size of a machine word
to start executing the instruction after the fork system call.

o set the register that holds system calls’ return values, tf_vO0 to 0, since
the new process is the child.

Programming: Add a function call to mips_usermode with a properly
initialized trapframe in enter_forked_process.

o« remember to declare the trapframe struct in the function so that
it can go to the kernel stack for the child process.

e« remeber to modify

13

— tp_epc register to increment program counter by 4

— tp_vO0 register to return 0 from the fork to the child process

Theoretically, our implementation of sys_fork is complete. However, without
essential synchronization primitives, we have to include an addtional instuction
at the end of our implementation of sys_fork. This is a call to sleep, which
forces the parent process to sleep before returning from the system call.

Programming: Add sleep and return from sys_fork. Add the follow-
ing lines, to delay parent process so that there is no contention for
output buffer and to indicate a successful return from sys_fork.
Hint: to use clocksleep, you must include the header file using the
include statement: #include <clock.h>

clocksleep(1);
return O;

Listing 5: Last lines of sys_fork
We have now completed implementing the fork and getpid system calls. You
can test your implementation using the following OS/161 user-level test pro-
grams:

e uw-testbin/onefork
e uw-testbin/pidcheck

You should read the onefork and pidcheck OS/161 user-level programs to
compare whether the output from your program is the expected output from
the OS/161 user-level program.

5.3 Implementing _exit

We now turn our attention to _exit system call. The call does not do much
right now. Let’s go through it line by line:

27 as_deactivate();

28 /*
29 * clear p_addrspace before calling as_destroy. Otherwise if
30 as_destroy sleeps (which is quite possible) when we

*
* come back we'll be calling as_activate on a

32 * half-destroyed address space. This tends to be
* messily fatal.

34 */

35 as = curproc_setas(NULL);

36 as_destroy(as);

These function calls effectively destroy the address space, freeing the code (text)
and data regions of the process. as_deactivate does not do anything currently,
but its intended function has to do with the hardware memory management unit
(MMU). We will discuss MMUs during the Virtual Memory lecture. We then
disassociate the memory from the process using curproc_setass(NULL), then
destroy adddress space structure using as_destroy.

14

Note that we are detaching and destroying the memory of the process while the
process is still running! This is possible because the system call is in the kernel,
and the address space only holds userspace memory. If we tried to return to
userspace after destroying the address space, the system would understandably
panic.

37

38 /* detach this thread from its process */

39 /* note: curproc cannot be used after this call */

40 proc_remthread (curthread) ;

41

42 /* if this is the last user process in the system, proc_dest
43 will wake up the kernel menu thread */

44 proc_destroy(p);

45

46 thread_exit ();

a7 /* thread_exzit () does not return, so we should never get her

48 panic("return from thread_exzit in sys_ezit\n");

The next set of function calls destroys the process and the thread state. As
we mentioned, proc holds general state for the process while the thread is the
schedulable instance, that we run on the CPU.

Here is a neat trick: We disassociate the thread from the process using
proc_remthread. Note, if the thread is scheduled on a CPU, it can continue ex-
ecution, but we can safely destroy the process using proc_destroy We destroy
the thread by using thread_exit function call that tells the OS/161 kernel to
remove the current executing thread off the CPU.

5.3.1 Initializing and Destroying proc structure for _exit

According to the man pages for _exit, we must “cause the current process to
exit. The exit code exitcode is reported back to other process(es) via the
waitpid() call” Therefore, we must provide a way for a parent process to find
the exitcode. A solution is to include these attributes in the proc structure:

e a pointer to an array of children processes

e a pointer to the parent process

e a variable to store the exitcode,

e and a variable to indicate the status of the process: running or exited.

Since, we are adding pointers between children and parent processes, there might
be instances where more than one process is accessing a proc structure simulta-
neously. Therefore, we will have to use some form of synchronization to protect
access to the proc structure. We will look into synchronization in much more
detail in the next assignment, and for this assignment we will use suboptimal
solutions.

Programming: Add to the proc struct, the following attributes:

o an array of processes to hold the children, p_children
Hint: OS/161 has a structure for arrays, struct array

15

o a pointer to the parent process, p_parent
¢ an int field called p_exitcode for storing the exitcode

e an int variable to record the p_exitstatus of the process as run-
ning or exited.

Programming: Initialize and destroy the newly added proc struct
attributes:

e create the array of processes in proc_create
¢ destroy the array of processes in proc_destroy.

o initialize the newly added members to the proc struct, such as
p_parent, p_exitcode and p_exitstatus

Hint: Which functions provided by 0S/161 can be used for creating
and destroying arrays?

Programming: Set the parent pointer of the child process in sys_fork
to the current process.

Hint: This can be done right after creating the new child proc struct
using proc_create_runprogram.

5.3.2 Delaying proc_destroy

We have changed sys_exit to store the exit code in the proc structure of
the exiting process. However, the proc struct is torn down and destroyed by
proc_destroy at the very end of sys_exit. The data is essentially lost. We
must delay calling proc_destroy if the exiting process has a parent that has
not itself exited.

Programming: Delaying proc_destroy.
e remove the proc_destroy call at the end of sys_exit.

o replace it with a piece of code that checks whether the process
has a running parent:

— if it does not: call proc_destroy to clean up the proc struc-
ture.

— otherwise, do not destroy the proc struct and use
p_exitstatus to mark the process as having exited and add
the exitcode in p_exitcode.

Note: This will make the kernel hang, since any process
with a parent will not be destroyed at this time, and the
kernel will not resume.

16

¢ add synchronization: as we allow parent and child processes to
access each others’ proc struct, it might be read or written by
multiple threads at once. To ensure a thread does not read
inconsitent state, we need to use synchronization primitives.

— We will use the spinlock_acquire(&p->p_lock) function call
to lock access to the current proc struct. So, before
the code that checks for a live parent process add the
spinlock_acquire (&p->p_lock) function call.

— We will include two calls to function spinlock_release(&p-
>p_lock),

* once before the call to proc_destroy and

* once after you set p_exitstatus and store the exitcode
in p_exitcode,if a parent process is alive

5.3.3 Monitoring children from the parent

We have added a p_children field in the proc struct, but we have not yet added
code to actually add children to the array. We will do this in the sys_fork
system call.

Programming: In sys_fork: add the pointer to the newly created
child proc into the parent’s p_children array using array_add.

Note: Your kernel will complain that you are calling aray_cleanup
on an array that is not empty. Since we have not removed the child
processes from our children processes array yet.

Now that the array of children is populated, we must free its contents before
calling array_destroy in proc_destroy. The array has pointers to all of the
children processes of the process, both running and exited. For the exited chil-
dren we need to call proc_destroy, since the children themselves have already
called _exit. For the children that are still running, we must set their parent
pointer to NULL. That way they will call proc_destroy on themselves when
exiting as per the code we wrote earlier.

Programming: In sys_exit, immediately after calling the as_destroy
function iterate the process’ array of children, p_children. For each
child in the array:

e create a temporary proc struct to copy the current child process
in the array, lets call it temp_child

e remove the child from the array
e check the p_exitstatus for temp_child

— if it indicates that the child has exited: call proc_destroy on
the child

17

— otherwise, set its p_parent field to NULL.

e add synchronization: wuse the process spinlock to protect
against concurrent accesses to the children. We must
call spinlock_acquire(&temp_child->p_lock) before inspecting
the p_exitstatus field, and call spinlock_release(&temp_child-
>p_lock) right before proc_destroy or right after setting p_parent.

At this point, your kernel should not hang. We have now completed implement-
ing the _exit. You can test your implementation using the following OS/161
user-level test programs:

e uw-testbin/pidcheck

You should read the pidcheck OS/161 user-level programs to compare whether
the output from your program is the expected output from the OS/161 user-level
program.

5.4 Implementing waitpid

The waitpid system call lets a parent process wait for a child process to exit,
then returns the child’s exit code to the parent process. The stub code is shown
below:

62 /* stub handler for waitpid() system call */

63

64 int

65 sys_waitpid(pid_t pid,

66 userptr_t status,

67 int optioms,

68 pid_t *retval)

69 {

70 int exitstatus;

71 int result;

72

73 /* this is just a stub implementation that always reports an
74 ezxit status of 0, regardless of the actual exit status of
75 the specified process.

76 In fact, this will return O even if the specified process
77 is still running, and even if it never existed in the first place.
78

79 Fiz this!

80 */

81

82 if (options != 0) {

83 return (EINVAL);

84 }

85 /* for mow, just pretend the ezitstatus is 0 */
86 exitstatus = 0;

87 result = copyout ((void *)&exitstatus,status,sizeof (int));
88 if (result) {

89 return(result);

90 }

91 *retval = pid;
92 return(0);

18

The signature of the function is identical to that of the system call in userspace.
The first argument is the PID of the child to be monitored. Recall, in UNIX
the PID can have a value of -1, in which case the system call monitors the first
child to change state. In OS/161, we assume the PID is always larger than 0.
The second argument, status, is a pointer to a userspace variable. The system
call will write out the status of the child into that variable. Since sys_waitpid
is run by the kernel, we cannot use a userspace pointer directly. We instead use
the copyout function that copies memory from the kernel to userspace.

We don’t use the third argument, options, in this assignment. The argument
allows the user to pass flags to the call to change its behavior. One such flag
is WNOHANG, which configures the call to exit immediately if no children have
exited yet. The default behavior is for the call to block until a child exits.

The retval argument is a kernel pointer to which we write the PID we ended
up waiting on, or -1 if there was an error. Since we always wait on a specific
child, in our case this argument will have a value of pid.

Explore: Why is retval a kernel pointer and not a userspace pointer like
status?

e How do we actually communicate the PID back to userspace?
o Consider where sys_waitpid is called and how retval is used.

o What is the number and size of variables the ABI allows us to pass directly
to userspace?

Our requirements for implementing waitpid are thus the following:

e Go through the process’ list of children to find the one with the right PID.
If it is not there, return an error. If it is, remove it from the array.

o If the child has not exited yet, wait until it does.
¢ Once the child has exited, get its exit code.
e Destroy the child’s proc struct.

e Return the exit code to userspace through the status argument.

Programming: Search for the correct child process.

o iterate through the array of children, examining each p_pid
against the PID passed into sys_waitpid.

e If we do not find the PID we exit with an appropriate error
message, refer to the man pages to find the relevant error codes.

o If we do find the child proc,
— copy the child pointer from the array into a temporary proc

struct, say temp_child

19

— remove the child proc pointer from the array

— break out of the loop, with a valid copy of the temp_child
proc struct.

Next, we have to check if the child is running or exited. If it has not already
exited, we have to wait until it exits. Normally, we would use a mechanism
called a condition variable for this purpose, but we have not implemented this
feature in OS/161 yet. Instead, we will use a technique called busy polling.
With busy polling the process checks at regular intervals whether a condition is
true. In case it is not true, it sleeps for a preset amount of time like 1 second,
wakes up, and checks the condition again. If the condition has turned true the
process breaks out of the loop.

We will implement busy polling, using the spinlocks in the proc struct. We will
learn more about them in Threads and Synchronization lectures. Therefore, we
provide you with the code, you need to add in sys_waitpid to implement busy
polling. The code must be placed after we have found the child process and
copied it into a temporary temp_child proc struct.

#include <clock.h>

spinlock_acquire (&temp_child->p_lock);
while (!'temp_child->p_exitstatus) {
spinlock_release (&temp_child->p_lock);
clocksleep(1);
spinlock_acquire (&temp_child->p_lock);
}
spinlock_release (&temp_child->p_lock);

Listing 6: Busy Polling in sys_waitpid

Programming: Add busy polling to in sys_waitpid to wait for the
correct child proc to change p_exitstatus to exited.

Hint: Read the code to understand what the value of p_exitstatus
should be when a process exits.

Once a child has exited, we can retrieve the exit code from the proc structure
and store it into a local variable. We can then destroy the child proc struct.
Remember that we removed proc_destroy from exit for this exact reason.

Programming: Extract the p_exitcode into the local varaible
exitstatus and call proc_destroy for the temp_child child proc struct.

Finally, we pass the return value to userspace. We do this by passing the exit
code to the local exitstatus variable that is passed to copyout in the inital
stub code.

However, we do not pass the exit code itself. The waitpid ssytem call can be
used to monitor a lot of other status changes, e.g. if a child process was stopped
or started running, and status argument in waitpid encodes both the event
that happened and a possible return value. The _MKWAIT family of macros is

20

used for bit manipulations to encode both the exitcode and the event that
happened in a single variable. In the scope of this progrmaming assignment,
waitpid will only check for process termination. Therefore, we can simply pass
the exitcode to _MKWAIT_EXIT before assigning it to exitstatus.

Programming: Pass the exitcode to _MKWAIT_EXIT and then assign it
to exitstatus.

And we’re done!
To test your implementation using the following OS/161 user-level test pro-
grams:

e uw-testbin/pidcheck
e uw-testbin/widefork
e testbin/forktest

To test your implementation, use user/testbin/forktest, user/uw-
testbin/onefork, and user/uw-testbin/waitpid. If the tests pass, your im-
plementation is correct. Again, read the test program to compare your output
with the expected output.

6 Al-userspace Programming Requirements

In Al-userspace you are required to use process and file management system
calls to implement a simple Linux shell in C capable of supporting:

redirection: The shell should support redirection of input and, or output.

execution of a sequence of programs that communicate through a pipe:
For example, if the user types commandl | command2 | command3. The
output from the execution of one commandi, should be used as input to
the command?2 that is following.

You will need to use several Linux system calls that were introduced in the
lectures such as: fork, exec, open, close, pipe, dup2 and wait.

The most useful resource will be the man pages for these system calls in a Linux
or UNIX-like computing environment. You can use the manual pages for a
system call, by typing

man 2 SYSTEM_CALL

to identify the parameters, description and return values for that SYSTEM_CALL
Your progrmaming assignment should be implemented in C language
and your program should in my_mini_shell.c. When your mini shell

runs, its prompt should be just the symbol $ followed by a single
space. Here is a sample of the compilation and execution of your mini shell.

21

dafault_shell_display_prompt >gcc -o myminish my_mini_shell.c
dafault_shell_display_prompt >./myminish

$ 1s

my_mini_shell.c myminish myshell output.txt sample.txt

$

7 Submitting Your Work

To submit your work, you must use the cs350_submit program in the
linux.student.cs computing environment.

Important! You must use cs350_submit, not submit, to submit your
work for CS350.

Note the usage for cs350_submit command is as follows
% usage: cs350_submit <assign_dir> <assign_num_type>

The assign_dir is the path to the root folder of the programming assignment.
For the Al-kernel side programming assignment, the assign_dir is the path to
your 0s161-1.99 folder.

The assign_num_type for the kernel side is ASST2.

Note: There is no mistake here, we will use the ASST2 kernel to build

and test this A1-OS/161 kernel side programming assignemnt. By
using the ASST2 kernel configuration, we will remove some warnings
that are part of synchronization primitives kernel, ASST1. Also, note
that if you used the #if OPT_A1 statements, they will be automatically
included in the ASST2 kernel. Similarly, if you are using the cs350-
container, you will use ASST2 to build, and test the kernel for this
progrmaming assignment, e.g. build_kernel ASST2.

For the userspace programming assignment, the assign_dir is the
root directory for the userspace programming assignment. The
userspace programming assignment root directory should contain
the my_mini_shell.c program. The assign_num_type for the userspace
is ASSTUSER1.

Therefore, to run the ¢s350_submit command for submitting the Al-userspace
programming assignment the command will look like this:

% cs350_submit cs350-student/al ASSTUSER1

The argument assign_dir in the ¢s350_submit command, packages up your
0S/161 kernel code or userspace program, respectively, and submits it to the
course account using the regular submit command.

This assignment only briefly summarizes what cs350_submit does.

Look carefully at the output from cs350_submit. It is a good idea to run the
¢s350_submit command like this:

22

cs350_submit c¢s350-student/al ASSTUSER1 | tee submitlog.txt

This will run the ¢s350_submit command and also save a copy of all of the
output into a file called submitlog.txt, which you can inspect if there are
problems. This is handy when there is more than a screen full of output.

You may submit multiple times. Each submission completely replaces any pre-
vious submissions that you may have made for this assignment.

8 Optional: Writing a Script

This section is optional.

It gives you a brief lesson on writing and running shell scripts. You may be
interested in writing a shell script to run commands to test your implementation
of the OS/161 Kernel Here is a simple script to run some of the OS/161 user-level
test programs to test your kernel implementation for Al.

#!/bin/sh

0S161R0O0T="$HOME/cs350-0s161/root"
CONF="sys161.conf"
KERNEL="kernel-ASSTO"

OLDDIR="$PWD"
cd "$0S161R0O0T"

sys161 -c $CONF $KERNEL "p uw-testbin/pidcheck;p uw-testbin/pidcheck;q;"
sys161 -c $CONF $KERNEL "p uw-testbin/widefork;q"
sys161 -c $CONF $KERNEL "p testbin/forktest;q"

cd $0LDDIR

You can copy the simple script file to your linux student environment. Make
the script executable with the chmod +x filename command, where filename
is the name of the script file with the .sh extension. The you can simply run
the script using ./filename to run the script.

You should read the script and note the path to 0S/161R00T, the conf file used
and the kernel version. The 0S/161R00T path may be different for you and you
should edit that path, as necessary. This script is using the ASSTO kernel, the
kernel you built for porgramming assignment zero. As you implement features
from Al, you will build and test with the kernel-ASST1.

23

	Introduction
	Prelab-A1: Concept Review - Processes and System Calls
	Processes and System Calls
	System Call for Process Creation
	System calls for Process Management

	Prelab-A1: Code Review - OS/161
	kern/syscall
	kern/arch/mips/
	kern/include
	kern/vm
	In user

	A1-OS/161 Kernel System Call Implementation Requirements
	A1: OS/161 Kernel Side Programming
	Implementing getpid
	Implementing fork
	Implementing _exit
	Initializing and Destroying proc structure for _exit
	Delaying proc_destroy
	Monitoring children from the parent

	Implementing waitpid

	A1-userspace Programming Requirements
	Submitting Your Work
	Optional: Writing a Script

