
CS350 Operating Systems Winter 2022

A2 - Assignment Specification

1 Introduction
In this assignment, you will implement kernel synchronization primitives for
OS/161 as your A2 kernel space programming component. The A2 userspace
programming assignment objective is to use POSIX Pthread API and its syn-
chronization primitives to create multi-threaded programs.

Important: before you start working on this assignment, you should recon-
figure and rebuild your OS/161 kernel.

In the linux.student environment, this is done by:

cd kern/conf
./config ASST1
cd ../compile/ASST1
bmake depend
bmake
bmake install

All OS/161 kernel builds for this assignment should occur in the kern/compile/ASST1
directory in the linux.student environment.

In the cs350-container, you can configure and build the kernel by:

build_kernel ASST1 //configure and build
cd /os-compile/
sys161 kernel-ASST1 //run the kernel

It is important to note that for OS/161 Kernel space programming assign-
ment, we will use the ASST1 assignment directory, even though this is assignment
2. We are using the configuration from previous terms, at which time, this was
assignment 1, hence the tag ASST1. The userspace programming assignment
will be ASSTUSER2.

Some general advice for this assignment:

• Start early. The instructions are detailed, but even debugging simple
mistakes are time consuming. This holds doubly true if you are not espe-
cially familiar with C.

• Compile often. By checking whether the code compiles after every pro-
gramming prompt, explicitly specified in the following sections, you will
be able to pinpoint problems very quickly. The code should compile after
every properly implemented programming prompt.

In this assignment, for the A2 - OS/161 kernel programming componenet,
we will use two prompts.

1

Explore prompts: guide you towards a better understanding of the OS/161
kernel code.

Programming prompts: give you step by step implementation instructions
for implementing synchronization primitives in OS/161 kernel. Read
these carefully!

2 Pre-lab A2 - Code Review OS/161
The OS/161 kernel includes four types of synchronization primitives: spinlocks,
semaphores, locks, and condition variables. Spinlocks and semaphores are al-
ready implemented. Locks and condition variables are not – it is your task to
implement them.

The relevant �files for this assignment are:

• os161-1.99/kern/include/synch.h

• � os161-1.99/kern/thread/synch.c

�

2.1 Locks
The interface for the lock structure is defined in kern/include/synch.h. Stub
code is provided in kern/threads/synch.c. You can use the implementation
of semaphores as a model, but do not build your lock implementation
on top of semaphores or you will be penalized. In other words, your lock
implementation should not use sem_create(), P(), V() or any of the other
functions from the semaphore interface.

Locks are used throughout the OS/161 kernel. You will need properly func-
tioning locks for this and future assignments to ensure that the kernel’s threads
are properly synchronized. Because of this, implementing locks correctly -
though not difficult - is the most important part of this assignment. Make
sure that you get locks working before moving on to the other parts
of the assignment.

2.2 Condition Variables
The interface for the condition variables for OS/161 are in the cv struc-
ture is defined in kern/include/synch.h and stub code is provided in
kern/thread/synch.c. Each condition variable is intended to work with a
lock: condition variables are only used from within the critical section that is
protected by the lock.

2

3 A2: OS/161 Kernel Side Programming
In this section, we will guide you through the OS/161 synchronization primitive
programmig assignment for A2.

3.1 Implementing locks
The lock structure in OS/161 currently only has a single member, the name of
the lock.
struct lock {

char *lk_name;
// add what you need here
// (don't forget to mark things volatile as needed)

};

Listing 1: lock structure in os161-1.99/kern/include/synch.h
We will need to complete the following operations on locks:

lock_create - When the lock is created, no thread should be holding it.

lock_destroy - When the lock is destroyed, no thread should be holding it.

lock_acquire - Get the lock. Only one thread can hold the lock at the same
time.The call to lock_acquire, should be a blocking call, so that if the
lock cannot be acquired, because it is unavailable, lock acquire should
cause the thread to block, until the lock is available.

lock_release - Free the lock. Only the thread holding the lock may do this.

lock_do_i_hold - Return true if the current thread holds the lock; false oth-
erwise.

It is important that these operations be atomic. A spinlock should
be used to ensure atomicity of lock_acquire and lock_release. To enable
blocking, if the lock cannot be acquired, lock acquire must release the spinlock
and cause the thread to block in the wchan.

Programming: To implement these operations on the locks. We will
need to introduce additional members to the lock structure

• a lk_owner which will be the thread that owns the lock

• a boolean variable, lk_held, to indicate whether the lock is avail-
able or not

• a wchan, lk_wchan

• a spinlock, lk_spnlk

3

A simple way to uniquely identify a thread is to use the address of the thread
structure. OS/161’s curthread global variable points to the thread structure
of the currently running thread.

Programming: Implement lock_create and lock_destroy functions.

• create the wchan and initialize the spinlock: use the sem_create
and sem_destroy functions to help you create the lk_wchan and
initialize the lk_spinlock in lock_create and lock_dstroy

• initialize the lk_owner to NULL, and

• initialize lk_held to false

Remember you should use kmalloc and kfree, respectively. Every-
thing allocated in lock_create should be freed in lock_destroy, in-
cluding the lock structure itself.

To implement lock_acquire, the pseudo code is presented below:
lock_acquire(lock *lk) {

KASSERTIONS(... lock not null, don't already own lock ...)
 spinlock_acquire(lk->spin)
 while (lk->held) {
 wchan_lock(lk->wchan)
 spinlock_release(lk->spin)
 wchan_sleep(lk->wchan)
 spinlock_acquire(lk->spin)
 }
 lk->held = true
 lk->owner = curthread //curthread is current thread
 spinlock_release(lk->spin)
}

Listing 2: Lock Pseudocode.

Explore: You are encouraged to think about the following concepts:

• What is the purpose of the spinlock used by a lock?

– The lock structure has a field which indicates if the lock is available
or not.

– To take the lock, a thread must test-and-set the field which holds the
lock’s availability

– We would have a race condition because the test-and-set operation
requires mutual exclusion.

– We can use a spinlock, instead of assembly, to protect the critical
section.

– The spinlock is only held for a brief amount of time — only for the
test-and-set.

• Why we DO NOT block a thread (put it to sleep) while it owns the
spinlock!

4

• Why a loop? When a thread, say T_B, is unblocked and continues ex-
ecution there is a possibility that the lock was taken by another thread,
T_A, that was scheduled to run before this thread, T_B, could take the
lock. Therefore after being unblocked it needs to ensure that lock is still
available. Hence, the test is in a loop.

• Why must you release the spinlock prior to calling wchan_sleep?

– A thread that calls wchan_sleep will block.
– If that thread owns the spinlock when it blocks, then no other threads

may acquire that spinlock. Those threads will end up spinning —
instead of blocking

– Must release spinlock prior to blocking to ensure that threads at-
tempting to acquire the lock do not spin on the spinlock

• Why should you lock the wait channel prior to releasing the spinlock? So
that you can ensure that there are no threads left on the wait channel.
A thread that is going to sleep must acquire the wait channel lock (using
wchan lock) before releasing the spinlock and sleeping. Otherwise, the
thread may fail to receive a wakeup signal when the lock is released.

The correct implementation of locks in OS/161 should enforce some constraints
on how locks are used. In lock_release, a lock can not be released by a thread
that is not holding the lock. This means that a thread can’t release the lock
before it acquires the lock and it can not release a lock that is held by another
thread.
A common question is how to handle these types of problems. Some possible
options are:

• Do not release the lock but do not report an error. This is the least
desirable option since a programmer calling lock release in an incorrect
way will not be notified of the error.

• Crash the kernel using panic()

• Use KASSERT() to test for and catch the error

Between panic() and KASSERT(), KASSERT is preferred, since lock_acquire()
and lock_release() will be called within the kernel, so there is a high degree
of confidence that they will be called correctly. If they are not there is a bug in
the kernel and we want to be sure to fix the bug.

Programming: Implement the lock_release function to:

• assert that the lock is not null,

• assert that the current thread does indeed hold the lock

• acquire the spinlock in the lock lk_spnlk to atomically set:

5

– the owner to NULL
– the lk_held to false;

• wake up one or all waiting threads and then release the spinlock

Programming: Implement lock_do_i_hold:

• assert that the lock is not null

• test the identifier of the calling thread against the identifier of
the lock holder. If the stored lock holder is a simple value that
will fit into a register, e.g. a pointer to a thread structure, then
it is not necessary to acquire the spinlock to read that value.

The file kern/test/synchtest.c implements a simple test case for locks, and
another for condition variables. You can run the lock test from the kernel menu
by issuing the sy2 command, e.g,:

% sys161 kernel "sy2;q"

If the lock test reports “Lock test done” without reporting any failure messages,
it has succeeded. Testing synchronization primitives like locks and condition
variables is difficult. sy2 is subject to false positives. In other words, an incorrect
lock or condition variable implementation may pass these tests. However, if your
implementation fails a test, there is definitely a problem.
You can test with sy2 and uw1 tests. We run each of these two tests using
several system configurations. A successful output from the sy2 test should
look like:

Starting lock test...
cleanitems: Destroying sems, locks, and cvs
Lock test done.

If the test produces other output, likely gibberish, it has failed.
A successful output from the uw1 test should look like:

Starting uwlocktest1...
value of test_value = 0 should be 0
TEST SUCCEEDED
cleanitems: Destroying sems and locks
uwlocktest1 done.

If the test doesn’t work it will report something like TEST FAILED.

3.2 Implementing Condition Varaibles in OS/161
The interface for the cv structure is defined in kern/include/synch.h and stub
code is provided in kern/thread/synch.c. Each condition variable is intended

6

to work with a lock: condition variables are only used from within the critical
section that is protected by the lock.
We will need to implement the following operations on cvs:

cv_create - initialize the cv struct members

cv_destroy - destroy the cv struct members

cv_wait - Release the supplied lock, go to sleep, and, after waking up again,
re-acquire the lock.

cv_signal -Wake up one thread that’s sleeping on this CV.

cv_broadcast -Wake up all threads sleeping on this CV.

Important: You should read the wchan operations in kern/include/wait.h
to see if you have to call kfree for wchan.
For all three operations cv_wait, cv_signal, and cv_broadcast, the current
thread must hold the lock passed in. Note that under normal circumstances
the same lock should be used on all operations with any particular CV. These
operations must be atomic.

Programming: To implement these operations on cvs. We will need
to introduce an additional member to the cv structure

• a wchan, cv_wchan

Programming: Implement cv_create and cv_destroy functions.

• create and destroy the cv_wchan: use the sem_create and
sem_destroy functions to help you

The OS/161 API for cv_signal and cv_broadcast have both a lock and a
cv as parameters. The documentation of the two functions indicates that “you
should own the lock passed into the function”. The lock, which protects access
to the shared variable, is used to both check the condition, and, modify it. This
is to prevent a race condition where multiple threads might read and write that
shared variable at the same time.
It makes no claim that the owned lock has to be the one used to protect that
shared variable/condition. You could pass any lock that you own into those
functions. Doing so would have no impact on how we use the cv, i.e., we would
still want to check (in most cases) that the condition is met upon wake.

Explore: Why might cv_signal want a pointer to the lock?
Briefly, because you should be the owner of the lock that protects the global
condition before you signal that the condition has been met.

1. When you call cv_wait, some global condition is not being met. This
happens inside of a lock (which ultimately, is used to protect that global
condition).

7

2. Any thread that changes that condition will require that same lock to
make that change. So, the thread that makes the condition true, will do
so inside of the critical section protected by that one lock.

3. Once a thread makes the condition true, it should immediately signal —
because at that EXACT moment in time, the condition is true. This
means the signal should happen inside of the critical section protected by
the lock. If you were to signal outside of this critical section there is a
chance another thread will have changed the condition value prior to your
signalling (which is undesirable).

Hence, the signalling thread should be the owner of the lock passed in.
Side Note: various implementations of Mesa-style CVs do NOT do this, but they
are not broken. The waiting thread, once returned to the critical section, simply
needs to re-check the condition before proceeding — which you may note, we
usually do anyway.

Programming: Implement cv_signal so that:

assert that cv, lock are not NULL

assert that the thread calling signal does own the lock.
Hint: you implemented a function called lock_do_i_hold

it must unblock exactly one thread waiting on the condition variable,
assuming that there is at least one such thread. This can be
implemented easily using wchan_wakeone.

Programming: Implement cv_broadcast so that:

assert that cv, lock are not NULL

assert that the thread calling signal does own the lock.
Hint: you implemented a function called lock_do_i_hold

it must unblock all threads waiting on the condition variable. A call
to wchan_wakeall is the simplest way to do this.

Since the cv functions are called from within a critical section protected by
a lock, it is not necessary for CVs to have their own spinlocks for enforcing
atomicity. However, since cv_wait releases and re- acquires the lock, it must be
handled carefully. It must acquire the wait channel lock via wchan_lock before
releasing the lock. Otherwise, there is a danger that the waiting thread may
miss a subsequent cv_signal or cv_broadcast.

Programming: Implement cv_wait, so that you:

• assert that cv, lock are not NULL

• assert that the thread calling signal does own the lock.

8

• Iacquire the wait channel lock, using wchan_lock

• release the lock

• sleep on the wait channel

• reacquire the lock after waking up

When you are using condition variables and locks for synchronization, it is
important to realize that when a shared variable is modified, it could change
the condition that other threads are waiting on, so we may want to signal
or broadcast those threads. This should be done right after modifying that
variable.
Why? Because at that exact moment in time we know for certain that the
condition has been met. By calling signal or broadcast, we guarantee that at
the time the waiting threads are woken, the condition is true. However, that
does not mean that the woken thread(s) will be able to proceed in their critical
section.
When a thread is woken, recall that it does not immediately run. Woke threads
are placed onto the ready queue , and the OS will choose when those threads will
run. It could be right away, but it could also be the distant future. Hence, there
is a possibility, that after the signaling thread (which modified the condition)
releases the lock that another thread is then able to modify the condition before
the woke thread is able to proceed! This is why we often check the condition in a
while loop (the same is true for the semaphore P and lock_acquire functions).
The file kern/test/synchtest.c implements a simple test case for locks, and
another for condition variables. You can run the cv test from the kernel menu
by issuing the sy3 command, e.g,:

% sys161 kernel "sy3;q"

The output from the condition variable test should be self-explanatory. Suc-
cessful output should look like this (repeated several times):

Starting CV test...
Threads should print out in reverse order 5 times.
Thread 31
Thread 30
...
Thread 0

Testing synchronization primitives like locks and condition variables is difficult.
sy3 is subject to false positives. In other words, an incorrect lock or condition
variable implementation may pass these tests. However, if your implementation
fails a test, there is definitely a problem.

9

4 A2-userspace Programming Requirements
In A2-usersapce you are required to implement a multithreaded program and
use synchronization primitives. This means working with threads, mutexes, and
condition variables.

4.1 Starter Code for A2-userspace Programs
In A2-userspace, there are two different questions that need to be answered.
In question 1, which we will refer to as, a2q1,you are required to implement a
multithreaded function that search for an article in a library, similar to the way,
you might search for a word in a file. Your multithreaded implementation should
meet a two-fold speedup against the single threaded version that is already
implemented.

In question 2, a2q2, you are required to use synchronization primi-
tives to implement a solution to a producer-consumer problem. In
this problem, there is a resource that is computed by producers and
consumers. There is a capacity on the resource that must be main-
tained by ensuring the ratio of the number of producers and con-
sumers that can use the resource at the same time. You are encouraged
to read the code to understand the context clearly.
For the A2-userspace we have provided you with starter code. The folder src
contains two subfolders a2q1 and a2q2. Download the folder from the course
website under the A2 starter code. The files in this folders are as follows:

a2q1 contains the following files:

• data.h and map.h - header files containing data definitions for arti-
cles and functions, respectively.

• main.c - contains the SingleThreadedWordCount function that
searches for the total number of occurrences of an article in the li-
brary

• map.c - contains the MultithreadedWordCount function, which you
have to implement to conduct a multithreaded search in the library
for the number of occurences of the article.

The solution needs to find the same number of occurrences as the single
threaded version in main.c, and provide the two-fold speedup.

a2q2 contains the following files:

• assignment.h and structs.h: include the header files for the header
for the functions and resource

• orderme.c: the main function that creates the producer and con-
sumer threads and computes the resource

10

https://student.cs.uwaterloo.ca/~cs350/W22/assignments/
https://student.cs.uwaterloo.ca/~cs350/W22/assignments/

• assignment.c: contains the functions that you must complete im-
plementing so that the consumers and producers can compute the
resource while maintaining the resource capacity.

Makefile: each folder contains a Makefile to build and run the program files

For A2-userspace assignments, you are only allowed to change map.c
and assignment.c for a2q1 and a2q2, respectively.Edits to other files
will not be recognized as we will use a fresh copy of the source code
and place your implementation in it.

4.2 Multithreaded Program
In this assignment, we introduce threads and the pthread API. Each process
can have multiple threads. Threads have their own set of CPU registers and
stack segments, but share the code and heap segments with each other. Since
each thread can potentially run on a separate CPU, multithreading lets us use
more than one core at a time to speed up computation.
The API used by C to create threads is the POSIX threads (pthreads) API.
The main three functions this API provides are:

pthread_create: This call creates a new thread. The thread starts exe- cuting
from the function given as an argument.

pthread_exit: This call destroys the thread, but not the process. The exiting
thread may pass a pointer to a variable in the heap as an exit value, to
be read by another thread using pthread_join

pthread_join: Wait for another thread in the same process to be done.

� A common pattern with multithreading is to spawn multiple workers using
pthread_create from an initial thread, then wait for them to be all done by re-
peatedly calling pthread_join. The initial thread communicates to each worker
what data it needs to process by passing to each thread different arguments;
this makes it very easy to parallelize tasks where each thread needs to only work
on part of the data at a time.

For this question we parallelize exactly this kind of workload. We
are given a ”library” of news articles, each of which is composed of
a sequence of words. The task we need to parallelize is counting the
number of times a certain word occurs in all articles. To count the
number of occurences we traverse the library one article at a time,
and one word at a time. We compare each word against the one we
are looking for, and increment a counter if they are identical.

The task is trivially parallelizable because we can process each article
separately. That means that we can create an arbitrary number of
threads, split the work between them, and gather all the individual

11

counters using pthread_join. There is no need for synchronization
since each thread has its own input.

For this question,�fill in the function in the file map.c. The solution
needs to find the same number of occurrences as the single threaded
version in main.c, and provide considerable speedup.

To run a2q1 you will require the number of articles to create, a seed
and the number of threads to use for the multi-threaded search.

% ./a.out
Usage: a2q1 [NUMARTICLES] [SEED] [NUMTHREADS]

This is a sample of the output, without a correct solution to the multi-threaded
version, with a small number of articles.

% ./a.out 30 3 4
Parallelizing with 4 threads...
ERROR: Single threaded version found 1584 occurences.
ERROR: Multi threaded version found 0 occurences.
ERROR: Please check for race conditions or other bugs.

Asample of the output, with a multi-threaded solution that is not correct:

% ./a.out 300 3 100
Parallelizing with 100 threads...
ERROR: Speedup is 1.260673, less than 2.000000
ERROR: Single Threaded is 10.919990s, mulithreaded is 8.662032s
ERROR: Please fix any bottlenecks in the code.

A sample of the output, with a correct solution to the multi-threaded version.

% ./a.out 30 3 100
Parallelizing with 100 threads...
Found 1584 occurences of abc.

4.3 Mutex and CVs
The two main synchronization primitives of the pthread library are mutexes and
condition variables.Mutexes function like spinlocks in that they provide mutual
exclusion, but are more efficient: A thread waiting on a mutex will be removed
from off the processor, leaving it free for another thread that can actually do
work. A thread waiting on a spinlock on the other hand will continuously try
to take the mutex (lock) by continuously executing the lock function until it
receives it. This leads to wasted CPU cycles if the thread that is already in the
critical section holdsthe spinlock for a long time.

12

Condition variables are used to deal with race conditions that arise
when multiple threads attempt to grab the same mutex. For exam-
ple, assume that we have a counter that threads either increment or
decrement, and which must stay above 0. If a thread wants to decre-
ment the counter but it is at 0, it has to wait until the counter is
incremented by another thread before decrementing it.

We protect a counter by a mutex both for reads and writes. If a
thread grabs the mutex to decrement the counter and finds it is at 0,
it has to wait for another thread to increment it. The derementing
thread, however, is holding the mutex and thus preventing any mod-
ification to the counter. The decrementing thread must thus leave
the mutex and wait until an increment happens.

The issue that arises then is how long to wait. A naive solution would
be to use sleep calls like in the code below:

while (true) {
lock () ;
if (condition == true) {
/*� Leave with the lock taken */
break ; }

/*� Else try again later �*/
unlock () ;
sleep (TIMEOUT) ; }

This solution, however, has two main weaknesses. If the timeout is too large,
the thread sleeps even when it could execute, potentially leading to massive
performance penalties for the waiting thread. If the timeout is too small, the
thread wakes up too often and wastes CPU time by needlessly trying to execute.
The solution is to use condition variables, an API for notifying waiting threads to
attempt to take the mutex and check if the condition they were testing holds.
The waiting thread calls pthread_cond_wait, while the thread that notifies,
uses pthread_cond_signal or pthread_cond_broadcast to wake up one or all
waiting threads, respectively.
We use the POSIX Pthread API to synchronize between threads. Each thread
in the code is a producer or a consumer of a shared resource. The threads enter
and exit from the resource at regular intervals. At any point in time, the ratio
of producers to consumers must be higher than a given value (e.g., for a ratio of
two there can only be 4 consumers present in the resource if 2 or more producers
are also present).

Use condition variables to ensure that the number of producers and
consumers in the resource leads to a valid capacity ratio. Since the

13

arrival and departures of producers and consumers can invalid the
capacity assertion, it is required that producers that want to exit
must check whether they can safely exit without invalidating the ca-
pacity assertion. In the case that a producer’s exit will invalidate the
capacity assertation, the prodcuer thread needs to wait until more
producers enters or consumers leave. The same holds for consumers
wanting to enter the resource. Currently, the program does not work with
a useful resource,nor does it perform any useful computation. it is only an ex-
ercise to work with mutexes and condition variables.
We have provided the assignment.c file, with stub code, you are required to
implement the functions:

consume_enter: to ensure that consumer threads can only enter compute, if
the capacity assertion does not fail

consume_exit: to ensure that we account for the consumer threads in the
resource

produce_enter: to ensure that new producer threads are accounted for in the
resource

produce_exit: to ensure that producer threads can only exit if the capacity
assertion does not fail

To run the a2q2 program:

% ./a.out
Usage: ./a.out <# consumers> <# producers> <ratio>

You must specify the number of consumers, number of producers and ratio to
maintain for the resource capacity.
In a correct implementation, the program always terminates, a sample output
from a correct implementation of the functions in assignment.c will have no
output. For instance, consider the following executions of the a2q2 program:

% ./a.out 8 3 2
Assertion failed: (num_producers * ratio >= num_consumers),
function resource_setup, file orderme.c, line 168.
zsh: abort
% ./a.out 8 3 2
% ./a.out 16 3 2

Assertion failed: (num_producers * ratio >= num_consumers),
function resource_setup, file orderme.c, line 168.
zsh: abort
% ./a.out 16 3 2
% ./a.out 9 3 2

Assertion failed: (num_producers * ratio >= num_consumers),
function resource_setup, file orderme.c, line 168.
zsh: abort

14

% ./a.out 9 3 2
% ./a.out 8 4 2
% ./a.out 10 5 2
% ./a.out 20 10 2
% ./a.out 21 10 2

Assertion failed: (num_producers * ratio >= num_consumers),
function resource_setup, file orderme.c, line 168.
zsh: abort
% ./a.out 21 10 2
% ./a.out 20 11 2
% ./a.out 22 11 2

You should not see any error messages as illustrated below:

% ./a2 8 4 2
Assertion failed: (resource->numAssertion failed:
(resource->numAssertion failed: (resource->num_consumers <=
resource->num_prod_consumers <=
resource->num_producers * resource->ratio),
functiucers * resource->ratio),
functiAssertion failed: (resource->numon assert_capacity,

Also note that you are required to run the program with a valid number of
producers and consumers, given the ratio. Important: to not modify any
other files in the source code except assignment.c.

5 Submitting Your Work
To submit your work, you must use the cs350_submit program in the
linux.student.cs computing environment.
Important! You must use cs350_submit, not submit, to submit your
work for CS350.

Note the usage for cs350_submit command is as follows

% usage: cs350_submit <assign_dir> <assign_num_type>

The assign_dir is the path to the root folder of the programming assignment.
For the A2-kernel side programming assignment, the assign_dir is the path to
your os161-1.99 folder.
The assign_num_type for the kernel side is ASST1.

Note: There is no mistake here, we will use the ASST1 kernel to
build and test this A2-OS/161 kernel side programming assignment.
By using the ASST1 kernel configuration, we will ensure the synchro-
nization primitives are tested correctly. Also, note that if you used

15

the #if OPT_A1 statements, they will be automatically included in the
ASST1 kernel. Similarly, if you are using the cs350-container, you
will use ASST1 to build, and test the kernel for this progrmaming
assignment, e.g. build_kernel ASST1.

For the userspace programming assignment, the assign_dir is the root
directory for the userspace programming assignment. The userspace
programming assignment root directory should maintain the direc-
tories that were in the starter code that was distributed for A2
userspace. The assign_num_type for the userspace is ASSTUSER2.
Therefore, to run the cs350_submit command for submitting the A2-userspace
programming assignment the command will look like this:

% cs350_submit cs350-student/a2 ASSTUSER2

The argument assign_dir in the cs350_submit command, packages up your
OS/161 kernel code or userspace program, respectively, and submits it to the
course account using the regular submit command.
This assignment only briefly summarizes what cs350_submit does.
Look carefully at the output from cs350_submit. It is a good idea to run the
cs350_submit command like this:

cs350_submit cs350-student/a2 ASSTUSER2 | tee submitlog.txt

This will run the cs350_submit command and also save a copy of all of the
output into a file called submitlog.txt, which you can inspect if there are
problems. This is handy when there is more than a screen full of output.
You may submit multiple times. Each submission completely replaces any pre-
vious submissions that you may have made for this assignment.

16

	Introduction
	Pre-lab A2 - Code Review OS/161
	Locks
	Condition Variables

	A2: OS/161 Kernel Side Programming
	Implementing locks
	Implementing Condition Varaibles in OS/161

	A2-userspace Programming Requirements
	Starter Code for A2-userspace Programs
	Multithreaded Program
	Mutex and CVs

	Submitting Your Work

