
CS350 Operating Systems Winter 2022

Final Exam

1 Introduction
There are two components to the CS350 Final Exam for Winter 2022. Read
these instructions clearly.

Quiz 5 - Final Quiz - The quiz will be on Learn. It will be open for a 24
hour window. The quiz will have restrictions on the duration. The en-
forced time will be 40 minutes. The material covered in the quiz will be
cumulative:

• Processes
• System Calls and Interrupts
• Threads
• Concurrency
• Synchronization
• Scheduling
• Virtual Memory - Hardware
• Virtual Memory - OS

There will be more focus on the material in the following sections ,which
were not covered by previous quizzes:

• File I/O
• File Systems

The final quiz will be available on Apr 13th 2022 starting at 12:01am
until Apr 13th 11:59 pm. You should see the availability of the quiz
on Learn.

Linux userspace Programming Assignment - The final porgramming as-
signment is to implement a simplified version of the Unix File System,
called SimpleFS. The progrmaming assignment will be in C. The final
programming assignment is due on April 20th at 5pm, no further
extensions. In this final exam programming poject specification, we will
provide:

• explicit implementation requirements for the final programming as-
signment

• starter code - with a Makefile

1



• instructions for submitting the final programming assignment/pro-
ject

Some general advice for this assignment:

• Start early. The instructions are detailed, but even debugging simple
mistakes are time consuming. This holds doubly true if you are not espe-
cially familiar with C.

• Compile often. By checking whether the code compiles after small mod-
ifications, you will be able to pinpoint problems very quickly.

2 Implementation Requirements
In this assignment, there are three components:

Shell: The first component is a simple shell program that allows the user to per-
form operations on the SimpleFS. The shell supports built-in commands
such as mount, create, read and write in the SimpleFS.

File System The second component takes the operation specified by the user
through the shell and performs them on the SimpleFS disk image. This
component has to organize the on-disk data structures and perform all the
bookkeeping necessary to allow for persistent storage of data. To store the
data, it will need to interact with the disk emulator via methods such
as

• disk_read: which allows the file system to read from the disk image
in 4096 byte blocks.

• disk_write: allows the file system to write to the disk image in 4096
byte blocks.

Disk Emulator: The third component emulates a disk by dividing a normal
file (called a disk image) into 4096 byte blocks and only allows the Sim-
pleFS to read and write in terms of the blocks. This emulator will per-
sistently store the data to the disk image using the normal open, read,
write system calls.

The disk emulator and the shell component is provided to you.
You have to complete the file system interface for the shell for this final pro-
gramming project.

3 Simple File System (SimpleFS) Design
In this section, we describe the SimpleFS disk layout, with disk blocks are
the common size of 4KB. The first block of the disk is the superblock that
delineates the layout of the rest of the file system. A certain number of blocks

2



following the superblock contain inode data structures. Typically, ten percent
of the total number of disk blocks are used as inode blocks. The remaining
blocks in the filesystem are used as plain data blocks, and occasionally as indirect
pointer blocks as shownin the example below:

In this example, we have a SimpleFS disk image that begins with a su-
perblock . This superblock consists of four fields:

1. Magic: The first field is always the MAGIC_NUMBER or 0xf0f03410. The
format routine places this number in to the very first bytes of the su-
perblock as a filesystem ”signature”. When the filesystem is mounted, the
OS looks for this magic number. If it is correct, then the disk is assumed
to contain a valid filesystem. If some other number is present, then the
mount fails, perhaps because the disk is not formatted or contains some
other kind of data.

2. Blocks: The second field is the total number of blocks, which should be
the same as the number of blocks on the disk.

3. Inode Blocks: : The third field is the number of blocks set aside for
storing inodes. The format routine is responsible for choosing this value,
which should always be 10% of the Blocks, rounding up, when nec-
essary.

4. Inode: The fourth field is the total number of inodes in the inode blocks.

Note that the superblock data structure is quite small: only 16 bytes. The
remainder of disk block zero is left unusued.

Each inode in SimpleFS looks like the following file:

3



Each field of the inode is a 4-byte (32-bit) integer. The Valid field is 1 if the
inode is valid (i.e. has been created)and is 0, otherwise. The Size field contains
the logical size of the inode data in bytes. There are 5 direct pointers todata
blocks, and one pointer to an indirect data block. In this context, ”pointer”
simply means the number of a block where data may be found. A value of 0
may be used to indicate a null block pointer. Each inode occupies 32 bytes, so
there are 128 inodes in each 4KB inode block.

Note that an indirect data block is just a big array of pointers to further
data blocks. Each pointer is a 4-byte int, and each block is 4KB, so there are
1024 pointers per block. The data blocks are simply 4KB of raw data.

One thing missing in SimpleFS is the free block bitmap. A real filesystem
would keep a free block bitmap on disk, recording one bit for each block that
was available or in use. This bitmap would be consulted and updated every
time the filesystem needed to add or remove a data block from an inode.

Since, the SimpleFS does not store this on-disk, you are required to keep a
free block bitmap in memory. That is, there must be an array of integers, one
for each block of the disk, noting whether the block is in use or available. When
it is necessary to allocate a new block for a file, the system must scan through
the array to locate an available block and allocate it. Similarly, when a block is
freed, it must be marked in the bitmap.

Suppose that the user makes some changes to a SimpleFS filesystem, and
then reboots the system (ie. restarts the shell). Without a free block bitmap,
SimpleFS cannot tell which blocks are in use and which are free. Fortunately,
this information can be recovered by scanning the disk. Each time that a Sim-
pleFS filesystem is mounted, the system must build a new free block bitmap
from scratch by scanning through all of the inodes and recording which blocks
are in use.This is much like performing an fsck (file system check) every time
the system boots.

SimpleFS looks much like the Unix file system. Each ”file” is identified by an

4



integer called an inumber. The inumber is simply an index into the array of in-
ode structures that starts in block one. When a file is created, SimpleFS chooses
the first available inumber and returns it to the user. All further references to
that file are made using the inumber.

For this assignment, you are not required to implement file and directory
names.

4 Disk Emulator
We have provided you with a disk emulator to store your filesystem. This ”disk”
is actually stored as one big file in the filesystem, so that you can save data in a
disk image and then retrieve it later. In addition, we will provide you with some
sample disk images that you can experiment with to test your filesystem. Just
like a real disk, the emulator only allows operations on entire disk blocks of 4 KB
BLOCK_SIZE You cannot read or write any smaller unit than that. The primary
challenge of building a filesystem is converting the user’s requested operations
on arbitrary amounts of data into operations on fixed block sizes.

The interface to the simulated disk is given in disk.h:
// disk.h: Disk emulator

#pragma once

#include <stdlib.h>
#include <stdbool.h>

#define BLOCK_SIZE 4096

typedef struct
{

int FileDescriptor; // File descriptor of disk image
size_t Blocks; // Number of blocks in disk image
size_t Reads; // Number of reads performed
size_t Writes; // Number of writes performed
size_t Mounts; // Number of mounts

} Disk;

// Default constructor
Disk *new_disk();

// Destructor
// @param disk pointer
void free_disk(Disk *disk);

// Open disk image
// @param disk pointer
// @param path Path to disk image
// @param nblocks Number of blocks in disk image
void disk_open(Disk *disk, const char *path, size_t nblocks);

// Return size of disk (in terms of blocks)
// @param disk pointer
size_t disk_size(Disk *disk);

// Return whether or not disk is mounted
// @param disk pointer
bool disk_mounted(Disk *disk);

// Increment mounts

5



// @param disk pointer
void disk_mount(Disk *disk);

// Decrement mounts
// @param disk pointer
void disk_unmount(Disk *disk);

// Check parameters
// @param disk pointer
// @param blocknum Block to operate on
// @param data Buffer to operate on
void disk_sanity_check(Disk *disk, int blocknum, char *data);

// Read block from disk
// @param disk pointer
// @param blocknum Block to read from
// @param data Buffer to read into
void disk_read(Disk *disk, int blocknum, char *data);

// Write block to disk
// @param disk pointer
// @param blocknum Block to write to
// @param data Buffer to write from
void disk_write(Disk *disk, int blocknum, char *data);

Before performing any sort of operation on the disk, you must call disk_open
and specify a disk image for storing the disk data, and the number of blocks in
the simulated disk. If this function is called on a disk image that already exists,
the contained data will not be changed. When you are done using the disk, the
destructor will automatcally release the file.

Make sure that your shell always opens the disk image first.
Once the disk is open, you may call disk_size to discover the number of

blocks on the disk. As the names suggest, disk_read and disk_write read and
write one block of data on the disk. For example:

Block block;
disk_read(disk, 0, block.Data);

Notice that the second argument is a block number, so a call to disk_read(disk,
0, data) reads the first 4KB of data on the disk, and disk_read(disk,
1,data) reads the next 4KB block of data on the disk. Every time that you
invoke a read or a write, you must ensure that data points to a full 4KB of
memory.

Additionally, you can register and unregister a disk as mounted by calling
the disk_mount and disk_unmount functions respectively. The disk_mounted
function returns whether or not the disk has been registerd as mounted.

Note that the disk has a few programming conveniences that a real disk
would not. A real disk is rather finicky – if you send it invalid commands, it will
likely crash the system or behave in other strange ways. This simulated disk is
more”helpful.” If you send it an invalid command, it will halt the program with
an error message. For example, if you attempt to read or write a disk block
that does not exist, it will throw an exception.

6



5 Implementing the SimpleFS
Using the disk emulator to build a working file system. We have provided the
interface to the filesystem and with stub code in fs.h as shown below:
void fs_debug(Disk *disk);
bool fs_format(Disk *disk);

FileSystem *new_fs();
void free_fs(FileSystem *fs);

bool fs_mount(FileSystem *fs, Disk *disk);

ssize_t fs_create(FileSystem *fs);
bool fs_remove(FileSystem *fs, size_t inumber);
ssize_t fs_stat(FileSystem *fs, size_t inumber);

ssize_t fs_read(FileSystem *fs, size_t inumber,
char *data, size_t length, size_t offset);

ssize_t fs_write(FileSystem *fs, size_t inumber,
char *data, size_t length, size_t offset);

You are required to implement the functions as follows:

fs_debug(Disk *disk): This function scans a mounted filesystem and reports
on how the inodes and blocks are organized. Your output from this method
should be similar to the following:

% ./sfssh ../marking/data/image.5 5
sfs> debug
SuperBlock:

magic number is valid
5 blocks
1 inode blocks
128 inodes

Inode 1:
size: 965 bytes
direct blocks: 2

sfs>

fs_format(Disk *disk): This function creates a new filesystem on the disk,
destroying any data already present. It should set aside ten percent of the
blocks for inodes, clear the inode table, and write the superblock. It must
return true on success, false otherwise. Note: formatting a filesystem
does not cause it to be mounted. Also, an attempt to format an
already-mounted disk should do nothing and return failure.

fs_mount(FileSystem *fs, Disk *disk): This function examines the disk
for a filesystem. If one is present, read the superblock, build a free block
bitmap, and prepare the filesystem for use. Return true on success, false
otherwise. Note: a successful mount is a pre-requisite for the
remaining filesystem calls.

7



fs_create(FileSystem *fs): This function creates a new inode of zero length.
On success, return the inumber. Otherwise, return -1 to signal failure.

fs_remove(FileSystem *fs, size_t inumber): This function removes the in-
ode indicated by the inumber. It should release all data and indirect blocks
assigned to this inode and mark them as free in the free block map. On
success, it returns true, false, otherwise.

fs_stat(FileSystem *fs, size_t inumber): This method returns the logi-
cal size of the given inumber, in bytes. Note: that zero(0) is a valid
logical size for an inode.On failure, it returns -1

fs_read: With arguments

• FileSystem *fs,
• size_t inumber,
• char *data,
• size_t length,
• size_t offset

This function reads data from a valid inode. It then copies length bytes
from the data blocks of the inode into the data pointer, starting at offset
in the inode. It should return the total number of bytes read. If the given
inumber is invalid, or any other error is encountered, the function returns
-1.
Note: the number of bytes actually read could be smaller than the number
of bytes requested, perhaps if the end of the inode is reached.

fs_write: With arguments

• FileSystem *fs,
• size_t inumber,
• char *data,
• size_t length,
• size_t offset

This function writes data to a valid inode by copying length bytes from
the pointer data into the data blocks of the inode starting at offset bytes.
It will allocate any necessary direct and indirect blocks in the process. It
returns the number of bytes actually written. If the given inumber is
invalid, or any other error is encountered, return -1. Note: the number of
bytes actually written could be smaller than the number of bytes request,
perhaps if the disk becomes full.

It’s quite likely that the File System struct will need additional internal
member variables in order to keep track of the currently mounted filesystem.
For example, you will certainly need a variable to keep track of the current free
block bitmap, and perhaps other items as well. Feel free to modify the fs.h to
include additional variables, structures or functions.

8



5.1 Implementation Notes:
Your job is to implement SimpleFS as described above by filling in the imple-
mentation of fs.c. We have already created some sample data structures to
get you started. These can be found in fs.h. To begin with, we have defined
a number of common constants that you will use. Most of these should be self
explanatory:

#define MAGIC_NUMBER 0xf0f03410
#define INODES_PER_BLOCK 128
#define POINTERS_PER_INODE 5
#define POINTERS_PER_BLOCK 1024

Note that POINTERS_PER_INODE is the number of direct pointers in each
inode structure, while POINTERS_PER_BLOCK is the number of pointers to be
found in an indirect block. The superblock and inode structures are easily
translated from the pictures above:

typedef struct
{ // Superblock structure

uint32_t MagicNumber; // File system magic number
uint32_t Blocks; // Number of blocks in file system
uint32_t InodeBlocks; // Number of blocks reserved for inodes
uint32_t Inodes; // Number of inodes in file system

} SuperBlock;

typedef struct
{

uint32_t Valid; // Whether or not inode is valid
uint32_t Size; // Size of file
uint32_t Direct[POINTERS_PER_INODE]; // Direct pointers
uint32_t Indirect; // Indirect pointer

} Inode;

Note carefully that many inodes can fit in one disk block. A 4KB chunk of
memory containing 128 inodes would look like this:

Inode Inodes[INODES_PER_BLOCK];

Each indirect block is just a big array of 1024 integers, each pointing to
another disk block. So, a 4KB chunk ofmemory corresponding to an indirect
block would look liks this:

uint32_t
Pointers[POINTERS_PER_BLOCK];

Finally, each data block is just raw binary data used to store the partial
contents of a file. A data block can be defined as an array of 4096 bytes:

9



char Data[BLOCK_SIZE];

Because a raw 4 KB disk block can be used to represent four different kinds
of data: a superblock, a block of 128 inodes, an indirect pointer block, or a plain
data block, we can declare a union of each of our four different data types. A
union looks like a struct, but forces all of its elements to share the same memory
space. You can think of a union as several different types, all overlaid on top of
each other:

typedef union
{

SuperBlock Super; // Superblock
Inode Inodes[INODES_PER_BLOCK]; // Inode block
uint32_t Pointers[POINTERS_PER_BLOCK]; // Pointer block
char Data[BLOCK_SIZE]; // Data block

} Block;

Note that the size of an Block union will be exactly 4KB : the size of the
largest members of the union. To declare a Block variable:

Block block;

Now, we may use disk_read() to load in the raw data from block zero. We
givedisk_read() the variableblock.data, which looks like an array of characters:
disk_read(disk, 0, block.Data); But, we may interpret that data as if it
were a struct superblock by accessing the super part of the union. For example,
to extract the magic number of the super block, we might do this:

x = block.Super.MagicNumber;

On the other hand, suppose that we wanted to load disk block 59, assume
that it is an indirect block, and then examine the 4th pointer. Again, we would
use disk_read) to load the raw data:

disk_read(disk, 59, block.Data);

But then use the pointer part of the union like this:

x = block.Pointers[4];

The union offers a convenient way of viewing the same data from multiple
perspectives. When we load data from the disk, it is just a 4 KB raw chunk of
data (block.Data). But, once loaded, the filesystem layer knows that this data
has some structure. The filesystem layer can view the same data from another
perspective by choosing another field in the union.

10



5.2 General Advice
1. Implement the functions roughly in order presented in fs.h. We have de-

liberately presented the functions of the filesystem interface in order of dif-
ficulty. Implement fs_debug, fs_format, and fs_mount first. Make sure
that you are able to access the sample disk images provided. Then, per-
form creation and deletion of inodes without worrying abou tdata blocks.
Implement reading and test again with disk images. If everything else is
working, then attempt fs_write.

2. Divide and conquer. Work hard to factor out common actions into simple
functions. This will dramatically simplify your code. For example, you
will often need to find and store individual inode structures by number.
This involves a fiddly little computation to transform an inumber into a
block number, and so forth. So, make two little functions to do just that:

bool find_inode(FileSystem *fs, size_t inumber, Inode *inode)

bool store_inode(FileSystem *fs, size_t inumber, Inode *inode)

Now, everywhere that you need to find or store an inode structure, you
can call these functions. You may also wish to have functions that help
you manage and search the free block map:

void initialize_free_blocks();
ssize_t fs_allocate_block(FileSystem *fs)

Anytime that you find yourself writing very similar code over and over
again, factor it out into a smaller function.

3. Test boundary conditions. We will certainly test your code by probing its
boundaries. Make sure that you test and fix boundary conditions before
handing in. For example, what happens if fs_create discovers that the
inode table is full? It should cleanly return with an error code. It certainly
should not crash the program or mangle the disk! Think critically about
other possible boundary conditions such as the end of a file or a full disk.

6 The Shell and its Built-in Commands
The shell we have provided for you is an interactive loop that

• repeatedly prints the prompt ”sfs> ”

• parses the input

• executes the command specified on that line of input

• waits for the command to finish

11



This is repeated until the user types exit or quit.
In this project, the shell has the following built-in commands:

help - lists all the build-in SimpleFS commands that are supported by your
shell.

format - format a new simpleFS

mount - mounting a SimpleFS

debug - print debugging information about the SimpleFS

create - create an inode

remove - remove an inode

cat - output information from an inode

stat - give stats about an inode

copyin - copying data in from the SimpleFS

copyout - copy data out to the SimpleFS

help - list the built-in commands provided in sfs_shell

exit - terminate the sfs_shell program

We have provided for you a simple shell that will be used to interface with
your filesystem and the emulated disk. When grading your work, we will use
the shell to test your code, so be sure to test extensively. To use the shell, build
the source code using the Makefile provided and run with the ./sfssh with the
name of a disk image, and the number of blocks in that image. For example,
to use the image.5 example given in the data folder below, run from the src
folder after building the source files:

./sfssh ../data/image.5 5

Or, to start with a fresh new disk image, just give a new filename and number
of blocks:

$ ./sfssh newdisk 25

Once the shell starts, you can use the help command to list the available
commands:

% ./sfssh ../data/image.5 5
sfs> help
Commands are:
format
mount

12



debug
create
remove <inode>
cat <inode>
stat <inode>
copyin <file> <inode>
copyout <inode> <file>
help
quit
exit
sfs>

Most of the commands correspond closely to the filesystem interface. For
example, format, mount, debug, create and remove call the corresponding
functions in the fs.c. Make sure that you call these functions in a sensible
order. A filesystem must be formatted once before it can be used. Likewise, it
must be mounted before being read or written.

The complex commands are cat,copyin, and copyout. cat reads an
entire file out of the filesystem and displays it on the console, just like the Unix
command of the same name. copyin and copyout copy a file from the local Unix
filesystem into your emulated filesystem. For example, to copy the dictionary
file into inode 10 in your filesystem, do the following:

sfs> copyin /usr/share/dict/words 10

Note that these three commands work by making a large number of calls to
fs_read and fs_write for each file to be copied.

7 Tests
To help you verify the correctness of your SimpleFS implementation, we have
provided you, with the following disk images:

image.5
image.20
image.200

Also note, that depending on how you implement the various functions, the
number of disk reads and writes may not match.As long as you are not too far
above the numbers in the test case, then you will be given credit.

8 Submitting Your Work
To submit your work, you must use the cs350_submit program in the linux.student.cs
computing environment.

13



Important! You must use cs350_submit, not submit, to submit your
work for CS350.

Note the usage for cs350_submit command is as follows

% usage: cs350_submit <assign_dir> <assign_num_type>

The assign_dir is the path to the root directory that should contain the C
files for your the final project. If you kept the directory structure in the starter
code, this is the src folder. You are required to use the C files provided in the
starter code.

The assign_num_type for this final programming assignment is FINAL.
Therefore, to run the cs350_submit command for submitting the final pro-

gramming assignment, the command will look like this:

% cs350_submit cs350-student/final/src FINAL

The argument assign_dir in the cs350_submit command, packages up
your userspace program and submits it to the course account using the regular
submit command.

This assignment only briefly summarizes what cs350_submit does. Look
carefully at the output from cs350_submit.

It is a good idea to run the cs350_submit command like this:

cs350_submit cs350-student/final/src FINAL | tee submitlog.txt

This will run the cs350_submit command and also save a copy of all of the
output into a file called submitlog.txt, which you can inspect if there are
problems. This is handy when there is more than a screen full of output.

You may submit multiple times. Each submission completely replaces any
previous submissions that you may have made for this assignment.

14


	Introduction
	Implementation Requirements
	Simple File System (SimpleFS) Design
	Disk Emulator
	Implementing the SimpleFS
	Implementation Notes:
	General Advice

	The Shell and its Built-in Commands
	Tests
	Submitting Your Work

