
CS350: Processes

Zille Huma Kamal and Emil Tsalapatis

University of Waterloo

1 / 55

Operating System

Operating System

Hardware: CPU, Memory and Devices

emacs

2 / 55

Operating System: Basic Abstractions and APIs

Operating System

Hardware: CPU, Memory and Devices

emacs

Process Threads Locks File I/O

3 / 55

Today: Introduce the Process Abstraction

Operating System

Hardware: CPU, Memory and Devices

emacs

Process Threads Locks File I/O

4 / 55

Processes

• A process is an instance of a program running

• Examples (can all run simultaneously):
I gcc file_A.c – compiler running on file A
I gcc file_B.c – compiler running on file B
I emacs – text editor
I firefox – web browser

• Non-examples (implemented as one process):
I Multiple firefox windows or emacs frames (still one process)

• Modern OSes run multiple processes simultaneously

• Why processes?
I Simplicity of programming
I Higher throughput (better CPU utilization), lower latency

5 / 55

Speed

• Multiple processes can increase CPU utilization
I Overlap one process’s computation with another’s wait

• Multiple processes can reduce latency
I Running A then B requires 100 sec for B to complete

I Running A and B concurrently makes B finish faster

I A is slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

6 / 55

Concurrency and parallelism

• Parallelism fact of life much longer than OSes have been around
I E.g., say takes 1 worker 10 months to make 1 widget
I Latency for first widget >> 1/10 month
I Company may hire 100 workers to make 100 widgets
I Throughput may be < 10 widgets per month

(if can’t perfectly parallelize task)
I And 100 workers making 10,000 widgets may achieve > 10 widgets/month

• Most computers, laptops, and phones are multi-core!

• Computer with 4 cores can run 4 processes in parallel

• Result: 4× throughput

7 / 55

Lecture Objectives

• Process’s view of the world

• Kernel view of processes
I Implementing processes in the kernel

• User view of processes
I Crash course in basic Unix/Linux system call interface
I How to create, kill, and communicate between processes
I Running example: how to implement a shell

8 / 55

Outline

1 Process’s view of the world

2 Kernel view of processes

3 User view of processes

9 / 55

A process’s view of the world

• Each process has own view of machine
I Its own address space
I Its own open files
I Its own virtual CPU (through preemptive

multitasking)

• *(char *)0xc000 different in P1 & P2

• Simplifies programming model
I gcc does not care that firefox is running

• Sometimes want interaction between processes
I Simplest is through files: emacs edits file, gcc compiles it
I More complicated: Shell/command, Window manager/app.

10 / 55

Outline

1 Process’s view of the world

2 Kernel view of processes

3 User view of processes

11 / 55

Implementing processes

• OS keeps data structure for each proc
I Process Control Block (PCB)
I Called proc in Unix, task_struct in Linux, and just

struct thread in OS/161

• Tracks state of the process
I Running, ready (runnable), blocked, etc.

• Includes information necessary to run
I Registers, virtual memory mappings, etc.
I Open files (including memory mapped files)

• Various other data about the process
I Credentials (user/group ID), signal mask, controlling

terminal, priority, accounting statistics, whether being
debugged, which system call binary emulation in use, . . .

PCB

12 / 55

Mutliprogramming - Process states

• Process can be in one of several states
I new & terminated at beginning & end of life
I running – currently executing (or will execute on kernel return)
I ready – can run, but kernel has chosen different process to run
I waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?
I if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
I if >1 runnable, must make scheduling decision

13 / 55

Scheduling

• How to pick which process to run

• Scan process table for first runnable?
I Expensive. Weird priorities (small pids do better)
I Divide into runnable and blocked processes

• FIFO/Round-Robin?
I Select process to run based on order of arrival to the ready queue

• Priority?
I Give some processes a better shot at the CPU

• We will spend a whole lecture on the topic of Scheduling

14 / 55

Time Sharing - Preemption

• Preemptive Kernel
I interrupts—periodic timer interrupt
I system call—e.g. read from disk, write to stdout buffer
I Schedule if higher priority than current running process

• Periodic timer interrupt
I If running process used up quantum, schedule another

• Device interrupt
I Disk request completed, or packet arrived on network
I Previously waiting process becomes runnable

• Changing running process is called a context switch

15 / 55

Context switch

16 / 55

Context switch details

• Very machine dependent. Typical things include:
I Save program counter and integer registers (always)
I Save floating point or other special registers
I Save condition codes
I Change virtual address translations

• Non-negligible cost
I Save/restore floating point registers expensive

. Optimization: only save if process used floating point

17 / 55

Protection - Privilege Modes

• Hardware provides multiple protection modes

• At least two modes:
I Kernel Mode or Privledged Mode – Operating System
I User Mode – Applications

• Kernel Mode can access privileged CPU features
I Access all restricted CPU features
I Enable/disable interrupts, setup interrupt handlers
I Control system call interface
I Modify the TLB (virtual memory ... future lecture)

• Allows kernel to protect itself and isolate processes
I Processes cannot read/write kernel memory
I Processes cannot directly call kernel functions

18 / 55

Mode Transitions

• Kernel Mode can only be entered through well defined
entry points

• Two classes of entry points provided by the processor:

• Interrupts
I Interrupts are generated by devices to signal needing

attention
I E.g. Keyboard input is ready
I More on this during our IO lecture!

• Exceptions:
I Exceptions are caused by processor
I E.g. Divide by zero, page faults, internal CPU errors

• Interrupts and exceptions cause hardware to transfer
control to the interrupt/exception handler, a fixed entry
point in the kernel. 19 / 55

Interrupts

• Interrupt are raised by devices

• Interrupt handler is a function in the kernel that services a device request

• Interrupt Process:
I Device signals the processor through a physical pin or bus message
I Processor interrupts the current program
I Processor begins executing the interrupt handler in privileged mode

• Most interrupts can be disabled, but not all
I Non-maskable interrupts (NMI) is for urgent system requests

20 / 55

Exceptions

• Exceptions (or faults) are conditions encountered during execution of a program
I Exceptions are due to multiple reasons:
I Program Errors: Divide-by-zero, illegal instructions
I Operating System Requests: Page faults
I Hardware Errors: System check (bad memory or internal CPU failures)

• CPU handles exceptions similar to interrupts
I Processor stops at the instruction that triggered the exception (usually)
I Control is transferred to a fixed location where the exception handler is located in

privledged mode

• System calls are a class of exceptions!

21 / 55

Execution Contexts

Execution Context: The environment where functions execute including their arguments,
local variables, memory.

• Context is a unique set of CPU registers and a stack pointer

• Multiple execution contexts:
I Application Context: user level process
I Kernel Context: privileged instructions, software interrupts, etc
I Interrupt Context: Interrupt handler

• Kernel and Interrupts usually the same context

• Context transitions:
I Context switch: a transitions between contexts

22 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame

User Stack
23 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame

User Stack
24 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame

printf() frame

User Stack
25 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame

printf() frame
write() frame

User Stack
26 / 55

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers
• Programs begin execution at _start

_start frame
main() frame

printf() frame
write() frame

???

User Stack
27 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• syscall instruction triggers the exception handler

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

Kernel Stack
28 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• common_exception saves trapframe on the kernel stack!

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

Kernel Stack
29 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• Calls mips_trap() to decode trap and syscall()

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

syscall()

Kernel Stack
30 / 55

Context Switch: User to Kernel
• trapframe: Saves the application context
• syscall() decodes arguments and calls sys_write()

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

syscall()

sys_write()

Kernel Stack
31 / 55

Context Switch: Returning to User Mode
• trapframe: Saves the application context
• sys_write() writes text to console

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

syscall()

sys_write()

console
driver

Kernel Stack
32 / 55

Context Switch: Returning to User Mode
• trapframe: Saves the application context
• Return from sys_write()

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

syscall()

sys_write()

Kernel Stack
33 / 55

Context Switch: Returning to User Mode
• syscall() stores return value and error in trapframe
• v0: return value/error code, a3: success (1) or failure

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

syscall()

Kernel Stack
34 / 55

Context Switch: Returning to User Mode
• mips_trap() returns to the instruction following syscall

• v0: return value/error code, a3: success (1) or failure

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

mips_trap()

Kernel Stack
35 / 55

Context Switch: Returning to User Mode
• common_exception restores the application context
• Restores all CPU state from the trapframe

_start frame
main() frame

printf() frame
write() frame

User Stack

common_exception

trapframe

Kernel Stack
36 / 55

Context Switch: Returning to User Mode
• write() decodes v0 and a3 and updates errno
• errno is where error codes are stored in POSIX

_start frame
main() frame

printf() frame
write() frame

User Stack Kernel Stack
37 / 55

Context Switch: Returning to User Mode
• errno is where error codes are stored in POSIX
• printf() gets return value, if -1 then see errno

_start frame
main() frame

printf() frame

User Stack Kernel Stack
38 / 55

Outline

1 Process’s view of the world

2 Kernel view of processes

3 User view of processes

39 / 55

System Call Interface

System Calls: Application programmer interface (API) that
programmers use to interact with the operating system.

• Processes invoke system calls

• Examples: fork(), waitpid(), open(), close(), ...

• System call interface can have complex calls
I sysctl() Exposes operating system configuration
I ioctl() Controlling devices

• Need a mechanism to safely enter and exit the kernel
I Applications don’t call kernel functions directly!
I Remember: kernels provide protection

40 / 55

Creating processes

• int fork (void);

I Create new process that is exact copy of current one
I Returns process ID of new process in “parent”
I Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

I pid – process to wait for, or -1 for any
I stat – will contain exit value, or signal
I opt – usually 0 or WNOHANG
I Returns process ID or -1 on error

41 / 55

Deleting processes

• void exit (int status);

I Current process ceases to exist
I status shows up in waitpid (shifted)
I By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

I Sends signal sig to process pid
I SIGTERM most common value, kills process by default

(but application can catch it for “cleanup”)
I SIGKILL stronger, kills process always

42 / 55

Running programs

• int execve (char *prog, char **argv, char **envp);

I prog – full pathname of program to run
I argv – argument vector that gets passed to main

I envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions
I int execvp (char *prog, char **argv);

Search PATH for prog, use current environment
I int execlp (char *prog, char *arg, ...);

List arguments one at a time, finish with NULL

• Example: minish.c
I Loop that reads a command, then executes it

43 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default:
17 waitpid(pid, NULL, 0); break;
18 }
19 }

Child Process (PID 6)
pid_t pid; char **av;
void doexec() {
execvp(av[0], av);
perror(av[0]);
exit(1);

}

/* ... main loop: */
for (;;) {
parse_input(&av, stdin);
switch (pid = fork()) {
case -1:
perror("fork"); break;

case 0:
doexec();

default:
waitpid(pid, NULL, 0); break;

}
}

44 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default:
17 waitpid(pid, NULL, 0); break;
18 }
19 }

Child Process (PID 6)
pid_t pid; char **av;
void doexec() {
execvp(av[0], av);
perror(av[0]);
exit(1);

}

/* ... main loop: */
for (;;) {
parse_input(&av, stdin);
switch (pid = fork()) {
case -1:
perror("fork"); break;

case 0:
doexec();

default:
waitpid(pid, NULL, 0); break;

}
}

44 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default: // ← After Fork (pid = 6)
17 waitpid(pid, NULL, 0); break;
18 }
19 }

Child Process (PID 6)
pid_t pid; char **av;
void doexec() {
execvp(av[0], av);
perror(av[0]);
exit(1);

}

/* ... main loop: */
for (;;) {
parse_input(&av, stdin);
switch (pid = fork()) {
case -1:
perror("fork"); break;

case 0: // ← After Fork
doexec();

default:
waitpid(pid, NULL, 0); break;

}
}

45 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default: // ← After Fork (pid = 6)
17 waitpid(pid, NULL, 0); break;
18 }
19 }

Child Process (PID 6)
pid_t pid; char **av;
void doexec() {
execvp(av[0], av); // ← After Fork
perror(av[0]); // Never executes!
exit(1);

}

/* ... main loop: */
for (;;) {
parse_input(&av, stdin);
switch (pid = fork()) {
case -1:
perror("fork"); break;

case 0:
doexec();

default:
waitpid(pid, NULL, 0); break;

}
}

46 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default: // ← After Fork (pid = 6)
17 waitpid(pid, NULL, 0); break;
18 }
19 }

Child Process (PID 6)
• Replaced by the new program

int
main(int argc, const char *argv[])
{
// ← Starts here!
...
exit(0);

}

47 / 55

minish.c (simplified)

Parent Process (PID 5)
1 pid_t pid; char **av;
2 void doexec() {
3 execvp(av[0], av);
4 perror(av[0]);
5 exit(1);
6 }
7
8 /* ... main loop: */
9 for (;;) {

10 parse_input(&av, stdin);
11 switch (pid = fork()) {
12 case -1:
13 perror("fork"); break;
14 case 0:
15 doexec();
16 default:
17 waitpid(pid, NULL, 0); break;
18 // ← waitpid returns
19 }
20 }

Child Process (PID 6)
• Replaced by the new program

int
main(int argc, const char *argv[])
{

...
exit(0); // ← Wake up waitpid

}

48 / 55

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

I Closes newfd, if it was a valid descriptor
I Makes newfd an exact copy of oldfd
I Two file descriptors will share same offset

(lseek on one will affect both)

• int fcntl (int fd, F_SETFD, int val)

I Sets close on exec flag if val = 1, clears if val = 0
I Sets file descriptor non-inheritable by new program

• Example: redirsh.c
I Loop that reads a command and executes it
I Recognizes input, output redirection

49 / 55

redirsh.c

1 void doexec (void) {
2 int fd;
3 if (infile) { /* non-NULL for "command < infile" */
4 if ((fd = open(infile, O_RDONLY)) < 0) {
5 perror(infile);
6 exit(1);
7 }
8 if (fd != 0) {
9 dup2(fd, 0);

10 close(fd);
11 }
12 }
13
14 /* ... do same for outfile→fd 1, errfile→fd 2 ... */
15 execvp (av[0], av);
16 perror (av[0]);
17 exit (1);
18 }

50 / 55

Pipes

• int pipe (int fds[2]);

I Returns two file descriptors in fds[0] and fds[1]

I Writes to fds[1] will be read on fds[0]

I When last copy of fds[1] closed, fds[0] will return EOF
I Returns 0 on success, -1 on error

• Operations on pipes
I read/write/close – as with files
I When fds[1] closed, read(fds[0]) returns 0 bytes
I When fds[0] closed, write(fds[1]):

. Kills process with SIGPIPE

. Or if signal ignored, fails with EPIPE

• Example: pipesh.c
I Sets up pipeline command1 | command2 | command3 ...

51 / 55

Why fork?

• Most calls to fork followed by execve

• Could also combine into one spawn system call

• Occasionally useful to fork one process
I Pre-forked Webservers for parallelism
I Creates one process per core to serve clients
I Lots of uses: Nginx, PostgreSQL, etc.

• Real win is simplicity of interface
I Tons of things you might want to do to child:

Manipulate file descriptors, environment, resource limits, etc.
I Yet fork requires no arguments at all

52 / 55

Spawning process w/o fork

• Without fork, require tons of different options
• Example: Windows CreateProcess system call

I Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, . . .

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);
53 / 55

