A Brief Git Primer for CS 350

Tyler Szepesi

University of Waterloo
stszepes@uwaterloo.ca

September 17, 2015

Overview

@ Introduction

@ One Time Setup

© Using Git
» Git on a Good Day
» Git on a Bad Day

@ Working from Home

@ Conclusion

Introduction

Introduction

Welcome to the CS 350 Git Primer tutoriall

What is version control?
e A way to track the history of a file.

e Allows you to create new versions and restore old versions.

Why use version control?
e Keep track of your files the right way.
e Allows you to restore old versions when you make the
inevitable mistake.
e Added Bonus 1: keeping backups is easy.

e Added Bonus 2: collaboration is easy (BUT NOT DONE IN
THIS COURSE!).

Introduction

Why version control?

(a) Using version control. (b) Not using version control.

A scientific and unbiased comparison.

Introduction

Git

What is this Git you speak of?

e A specific implementation of a version control system.

Why should | use Git and not some other version control system?
e This tutorial is specifically for CS 350 and Git.
e |t is one of the most commonly used version control systems.

e Learn it now, use it for everything!

But | really like X for version control!
e Cool, use that ...

e But we make no promises about our ability to support X.

One Time Setup

One Time Setup

This is the part where | do 80% of Assignment O ...

The purpose of Assignment 0 is to get your environment set up
and ensure that you can edit, compile and run your kernel.

Even if you plan on working outside of the student environment,
you should start by setting up on the student environment.

e We test your code on the student environment.
e You can only submit from the student environment.

e | am going to show you how to use Git to make your life easy.

One Time Setup
Getting Started

Instructions for OS/161 on the student environment:
https://www.student.cs.uwaterloo.ca/ cs350/common/Install161.html.

e Step 0: ssh to the student environment.
e Step 1: Edit your path.
e Step 2: Get the OS/161 code.

One Time Setup

Add a .gitignore

Generally, it is best to avoid version control on generated files.
A file named .gitignore lists all files that Git should ignore.

Create the file $HOME/cs350-0s161/0s161-1.99/.gitignore:

x/*/%/.depend

/%//build

build

cscope.out

tags

kern/compile/ASST*

Automatically generated.
user/testbin/randcall/calls.c
Generated by configure
defs.mk

One Time Setup

Commit the Initial Version

Now we are ready to set up the Git repository. First, we initialize a
new repository:

$ cd $HOME/cs350-0s161/0s161-1.99
$ git init

Now that we have a repository, we can add the initial version of
the files:

$ git add .
$ git commit -m "Initial Commit"

And that's it! Go back to the OS/161 set up instructions to learn
how to compile and run your kernel.

Using Git
Overview of Git

When working with Git there are three areas you need to be aware
of:

Working Staging Repository
Directory Area

O

Using Git
Overview of Git

As you are coding away, you are making changes to the files in the
working directory.

Working Staging Repository
Directory Area

(fieD)
O

Using Git
Overview of Git

Once you are satisfied with your changes, you add them to the
staging area.

Working Staging Repository
Directory Area

(D) | (fieD)
O

Using Git
Overview of Git

Finally, you commit the staging area to the repository.

Working Staging Repository
Directory Area

O

Using Git

Staging changes to be commited is done with the add command.
You can stage all of the changes in your working tree with the
following command:

$ git add .

Or you can stage individual files to be commited:

$ git add filel file2

Using Git

Commiting

Once you are happy with the changes you have staged, they can be
commited to Git using the commit command:

$ git commit

This will open up your default text editor and have you write a log

message. Alternatively, you can use the -m option and specify the
log message directly:

$ git commit -m "some log message"

Using Git

Summary

Your everyday usage of Git will be almost exclusively the following:

$ git add .
$ git commit -m "some log message"

It is so common that there is a built-in shorthand:

$ git commit -a -m "some log message"

Using Git

When Mistakes Happen

It is not a matter of “If you make a mistake ..."

It is not even a matter of “When you make a mistake ..."

It is a matter of “When you realize you made a mistake ...

How you deal with fixing a mistake depends on when you catch it.

Using Git

Clean up the Working Directory

Sometimes you are programming away in the working directory,
and realize that your “great” idea was not so great.

Now you want to go back to the latest working version of your
code.

With Git, this is as simple as a single command:

$ git checkout filel

Now you are back to the version of filel that was last commited.

Notice the peace of mind this gives you! You can just try things
without worrying about ruining hours of hard work.

Using Git

Unstaging Files

This is less common, but let's say that you stage a file to be
commited and then realize that you don't actually want to commit
that file.

Unstaging the file is another one-liner:

$ git reset filel

There are options to this particular command that make
irreversible changes to your repository. | strongly encourage you to
not use those options.

Using Git

Reverting Commits

The worst mistakes are the ones you don't catch until a few days
or weeks later. By this time, you have already commited the
changes to the repository.

With Git, the revert command allows you to undo one or more
commits. The simplest version of this is to undo the latest commit:

$ git revert HEAD

The revert command is considered safe because it does not delete
the old version from your repository's history, but rather creates a
new version that does not contain the specified commit’s changes.

Using Git

Reverting Multiple Commits

Sometimes, the mistake goes back further than your last commit.

To revert multiple commits, you can specify a range:

$ git revert HEAD"n..HEAD

n here is an integer and specifies the n'th last commit. For
example, the following will revert the last two commits:

$ git revert HEAD"2..HEAD

Working from Home

Working from Home

If you plan to work on a different environment, you can use Git to
keep your code changes coordinated across the different computers.

The University of Waterloo provides a service for hosting Git
repositories:
https://git.uwaterloo.ca

Login with your WatlAM credentials.

Do NOT use GitHub, Bitbucket, or any other external Git service. \

Working from Home

Create a Project

Create a new project on GitLab by clicking the plus symbol in the
top right corner.

Name it 0s161-1.99

Click " Create project”.

Working from Home

Push Your Existing Repository

On the student environment:

$ cd $HOME/cs350-o0s161/0s161-1.99

$ git remote add origin https://git.uwaterloo.ca/stszepes/os161
-1.99.git

$ git push -u origin master

This will initialize the newly created repository on GitLab with the
contents of the repository you created on the student environment.

Working from Home

Cloning from GitLab

To get a copy of your repository on a different machine:

$ git clone https://git.uwaterloo.ca/stszepes/0s161-1.99.git

Now you can work on the code at home, the exact same way you
would on the student environment.

Working from Home

Keeping Repositories Synchronized

After commiting changes to a local repository, you will want to
push those changes to the remote repository hosted on GitLab:

$ git push

When you start working on a different environment, you acquire the
latest changes by pulling any updates from the GitLab repository:

$ git pull

Working from Home

Summary

Your everyday usage of Git, when you use multiple environments:

When you first sit down to start working:

$ git pull

When you commit a change:

$ git commit -a -m "some log message"
$ git push

Conclusion

General Tips

Configuring Git:

$ git config --global core.editor vim
$ git config --global user.name "Tyler"
$ git config --global user.email "stszepesi@uwaterloo.ca"

Conclusion

Useful Resources

www.atlassian.com/git/tutorials

www-cs-students.stanford.edu/ blynn/gitmagic

gitref.org

www.kernel.org/pub/software/scm/git/docs/user-manual.html

www.vogella.com/tutorials/Git/article.html

git-scm.com/documentation

Conclusion

The End

Congratulations! You're on your way to becoming an expert!

Questions?

	Introduction
	One Time Setup
	Using Git
	Git on a Good Day
	Git on a Bad Day

	Working from Home
	Conclusion

