1. (a) Here is the parse tree for $abaa$.

(b) To see that G is ambiguous, we observe that the word aa has two leftmost derivations:

$S \Rightarrow ABA \Rightarrow aABA \Rightarrow aaABA \Rightarrow aaBA \Rightarrow aaA \Rightarrow aa$,

and

$S \Rightarrow ABA \Rightarrow BA \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow aa$.

(c) The CFG G generates the language $\{a^i b^j a^k \mid i, j, k \geq 0\}$. To see this, note that from A, one can generate words of the form a^i with $i \geq 0$ and from B, words of the form b^j with $j \geq 0$ are generated. Then from S, there is only one production $S \Rightarrow ABA$. Thus any word w with $S \Rightarrow^* w$ must be of the form $a^i b^j a^k$ for $i, j, k \geq 0$.

2. (a) The grammar G generates the language

$L = \{w$s$w^R \mid w \in \{a, b\}^*\}$.

First we will show that $L \subseteq L(G)$. Let $w \in L$. We will show this by induction on the length of w. The base case is $|w| = 1$, since $\varepsilon \notin L$. The only word of length 1 is $\$$. Thus, we have $w = \$$. There is a production $S \Rightarrow \$ \in G$, so $S \Rightarrow w$ and therefore $w \in L(G)$.

For the inductive step, we consider $|w| \geq 2$ and thus, $w \neq \$$. For our induction hypothesis, we suppose that for any $w' \in L$ with $|w'| < |w|$, we have $w' \in L(G)$. In other words, $S \Rightarrow^* w'$.
Since \(w \in L \) and \(|w| > 1 \), we have \(w = x\$x^R \) for some \(x \in \{a, b\}^* \). Let \(\sigma \in \{a, b\} \) be the first symbol of \(x \) (and therefore, the last symbol of \(x^R \)) and write \(x = \sigma y \) for \(y \in \{a, b\}^* \). Then we can write \(w = \sigma y \$ y^R \sigma \). Clearly, \(y \$ y^R \in L \) and is shorter than \(w \). By our inductive hypothesis, there is a derivation \(S \Rightarrow^* y \$ y^R \). Then we have the following derivation for \(w \):

\[
S \Rightarrow \sigma S \sigma \Rightarrow^* \sigma y \$ y^R \sigma = w,
\]

since for any choice of \(\sigma \), there exists a production \(S \to \sigma S \sigma \) in \(G \). Thus, we have \(w \in L(G) \) and therefore \(L \subseteq L(G) \) as desired.

Now, we show \(L(G) \subseteq L \). Let \(w \in L(G) \). We will show that \(w \in L \) by induction on \(k \), the number of steps in the derivation of \(w \). For our base case, we have \(k = 1 \). Since there is only one word with a derivation of length 1, we have \(w = \$ \) and therefore \(w \in L \).

Now, consider \(k \geq 2 \) and for our inductive hypothesis, we assume that every word \(w' \in L(G) \) with fewer than \(k \) steps in its derivation is in \(L \). Since \(k \geq 2 \), the first step in the derivation of \(w \) must be \(S \to \sigma S \sigma \), where \(\sigma \in \{a, b\} \). Let \(w' \in L(G) \) be a word that has a derivation with fewer than \(k \) steps and let \(w = \sigma w' \sigma \). By our inductive hypothesis, \(w' \in L \) so we can write \(w' = x \$ x^R \) for some \(x \in \{a, b\}^* \).

Then we have \(w = \sigma w' \sigma = \sigma x \$ x^R \sigma \) and therefore \(w \in L \) for any choice of \(\sigma \). Thus, \(L(G) \subseteq L \) as desired.

We have shown that \(L = L(G) \).

(b) We will follow the steps of the algorithm.

i. First, add a new start symbol.

\[
S_0 \to S
S \to aSa \mid bSb \mid \$
\]

ii. The next step is to eliminate any \(\varepsilon \)-productions. There are none.

iii. Then, we eliminate unit productions.

\[
S_0 \to aSa \mid bSb \mid $
S \to aSa \mid bSb \mid $
\]

iv. Next, we assign each terminal a variable unless it appears on its own on the right hand side of a production rule.

\[
S_0 \to ASA \mid BSB \mid $
S \to ASA \mid BSB \mid $
A \to a
B \to b
\]
v. Finally, we split up each rule.

\[
\begin{align*}
S_0 & \rightarrow AA_1 \mid BB_1 \mid \$ \\
S & \rightarrow AA_1 \mid BB_1 \mid \$ \\
A_1 & \rightarrow SA \\
B_1 & \rightarrow SB \\
A & \rightarrow a \\
B & \rightarrow b
\end{align*}
\]

3. (a) The PDA \(A \) accepts the language

\[L = \{a^i b^j c^k \mid i + k = j; i, j, k \geq 0\}\].

To see this, observe that in \(q_0 \), for each \(a \) that is read, an \(X \) is placed on the stack. To read \(b \)’s, the machine must move to state \(q_1 \) and machine discards an \(X \) on the stack for every \(b \) that is read. Once there are no more \(X \)’s on the stack, the machine pushes a \(Y \) onto the stack for every \(b \) that is read henceforth. Once the machine is prepared to read \(c \)’s, it moves to state \(q_2 \) and reads exactly as many \(c \)’s as there are \(Y \)’s on the stack.

Thus, the machine reads a sequence of \(a \)’s followed by \(b \)’s followed by \(c \)’s. Furthermore, if it reads \(m \) \(a \)’s, it will read at least \(m \) \(b \)’s. If more \(b \)’s are read, say \(n \) of them, the machine must then read \(n \) \(c \)’s. Thus, we have read a word of the form \(a^m b^{m+n} c^n \) as desired.

(b) We define the grammar \(G \) as follows

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow aAb \mid \varepsilon \\
B & \rightarrow bBc \mid \varepsilon
\end{align*}
\]

To see that \(G \) generates \(L \) defined above, we observe that \(A \) generates words of the form \(a^i b^j \) for \(i \geq 0 \), while \(B \) generates words of the form \(b^j c^j \) for \(j \geq 0 \). Since the first step of any derivation of \(G \) must be \(S \rightarrow AB \), we have that \(S \) generates words of the form \(a^i b^j b^j c^j = a^i b^{i+j} c^j \).

4. Since the stack of the PDA will ever only have at most three elements on it, there are only a finite number of configurations that the stack can be in. Therefore, we can simulate the action of the stack by only using a finite number of states. We will build an \(\varepsilon \)-NFA that does exactly this.

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be the PDA. We will construct an \(\varepsilon \)-NFA \(A = (Q', \Sigma, \delta', q'_0, F') \) as follows:

\[Q' = Q \times \Gamma^{\leq 3}\]; that is, a state of \(A \) is a state of \(P \) and a string of stack symbols with length at most 3.
\[q_0' = (q_0, Z_0) \]: the initial state of \(A \) is the start state of \(P \) and \(Z_0 \) on the stack.

\[F' = F \times \Gamma^{\leq 3} \]: \(A \) will accept if upon reading a word \(w \), the machine is in a final state of \(P \) with any contents on the stack.

\(\delta' \) is defined as follows: for each \((q', \alpha) \in \delta(q, a, X)\), where \(q, q' \in Q, a \in \Sigma \cup \{\varepsilon\}, X \in \Gamma \), and \(\alpha \in \Gamma^{\leq 3} \), we have

\[\delta'((q, X\beta), a) = (q', \alpha\beta) \]

where \(\beta \in \Gamma^{\leq 3} \). In this way, the NFA keeps track of both the current state of \(P \) and the current stack contents and the transition function of \(A \) mimics the action on the stack of \(P \). Since the stack is guaranteed never to exceed three elements, this is possible.

Therefore, \(A \) is an \(\varepsilon \)-NFA that recognizes the language of \(P \). Thus, \(L(P) \) is regular.

5. Let \(L = \{ w \in \{a, b, c, d\}^* \mid |w|_a = |w|_d \land |w|_b = |w|_c \} \). Show that \(L \) is not context-free.

Suppose that \(L \) is context-free and let \(n > 0 \) be the pumping length for \(L \). Choose \(w = a^n b^n d^n c^n \). We have \(|w|_a = |w|_d = n = |w|_b = |w|_c \) and therefore \(w \in L \) and \(|w| = 4n \geq n \) as required. Now consider factorizations of \(w = uvxyz \) such that \(|vxy| \leq n \) and \(vy \neq \varepsilon \). There are two cases to consider.

- \(vxy = \sigma^s, \sigma \in \{a, b, c, d\} \) such that \(0 < s \leq n \) and \(vy \neq \varepsilon \). For any factorization that satisfies the above properties, we have \(vy = \sigma^t \) for some \(t > 0 \). Then for any \(i > 0 \), we have \(|uv^i xy^i z|_a > |uv^i xy^i z|_x \), where \(\sigma \) is defined by

\[\sigma = d \quad \bar{b} = c \quad \bar{c} = b \quad \bar{d} = a. \]

Thus, \(uv^i xy^i z \notin L \) in this case.

- \(|vxy| = a^s b^t \) such that \(0 < s + t \leq n \) and \(vy \neq \varepsilon \). Since \(|vxy| \leq n \), \(vxy \) cannot contain any \(c \)'s or \(d \)'s. Therefore, choosing \(i > 1 \), we have either \(|uv^i xy^i z|_a > |uv^i xy^i z|_a \) or \(|uv^i xy^i z|_b > |uv^i xy^i z|_b \) and thus \(uv^i xy^i z \notin L \). By the same argument, we can choose \(vxy = d^s e^t \) and arrive at the fact that \(|uv^i xy^i z|_a < |uv^i xy^i z|_d \) or \(|uv^i xy^i z|_b < |uv^i xy^i z|_c \). Similarly, choosing \(vxy = b^s d^t \) and following the same argument gives us \(|uv^i xy^i z|_a < |uv^i xy^i z|_d \) or \(|uv^i xy^i z|_b > |uv^i xy^i z|_c \).

These are the only possible factorizations, since \(|vxy| \leq n \) makes it impossible for \(vxy \) to contain more than two different symbols. Therefore, every factorization of \(w = uvxyz \) fails to satisfy the pumping lemma and therefore \(L \) is not context-free as assumed.