1. To show that L is decidable, we construct a TM M that does the following on input w:

1. Mark the first tape cell with a distinct mark that denotes the beginning of the tape.
2. Scan w for an unmarked b; if an unmarked b is found, mark it, move left to the beginning of the tape, and go to the next step. If no b is found, check for an unmarked a. If no unmarked a is found, then reject; otherwise, accept.
3. Scan w to find an unmarked a; mark it if one is found go to the next step; otherwise no unmarked a was found, so accept.
4. Continue scanning w; if another unmarked a is found, mark it, move left to the beginning of the tape, and go to step 2; otherwise a second unmarked a was not found, so accept.

This machine will look for a b and try to find two as for each b it sees. Since at each step of the search, the machine knows whether it has seen two as for each b or not, it will always be able to halt with the correct answer. Therefore, L is decidable.

2. To show that L is decidable, we construct a TM M that does the following:

1. On input $\langle A, B \rangle$, where A and B are DFAs, construct a DFA C with $L(C) = L(A) \cap L(B)$ by using De Morgan’s laws:
 1. Construct DFAs A' and B' that recognize $\overline{L(A)}$ and $\overline{L(B)}$ by swapping the accepting and non-accepting states.
 2. Construct an NFA C' with $L(C') = L(A') \cup L(B')$.
 3. Obtain a DFA C'' by performing the subset construction on C'.
 4. Construct a DFA C with $L(C) = \overline{L(C'')}$.
2. Let E be the Turing machine that decides E_{DFA}. Run E on $\langle C \rangle$.
3. If E accepts, then accept. If E rejects, then reject.

Since E decides E_{DFA}, it is guaranteed to halt and give an answer. Thus, our Turing machine is guaranteed to halt and give an answer. Thus, this machine decides L and L is decidable.

3. (a) Given a Turing machine M that decides a language L, we can construct a Turing machine M' which decides \overline{L}. M' operates as follows:

1. On input w, run M on w.

2. If \(M \) rejects \(w \), then \textit{accept}; if \(M \) accepts \(w \), then \textit{reject}.

Since \(L \) is decidable, \(M \) is guaranteed to halt. Thus \(M' \) decides \(\overline{L} \) and \(\overline{L} \) is decidable.

(b) Let \(M_1 \) and \(M_2 \) be Turing machines that recognize languages \(L_1 \) and \(L_2 \), respectively. We can construct a Turing machine \(M_3 \) that recognizes \(L_1 \cap L_2 \). \(M_3 \) operates as follows:

1. On input word \(w \), run \(M_1 \) on \(w \). If \(M_1 \) accepts, then go to the next step. If \(M_1 \) rejects, then \textit{reject}.

2. Run \(M_2 \) on \(w \). If \(M_2 \) accepts, then \textit{accept}; otherwise, \textit{reject}.

First, we note that \(M_3 \) accepts \(w \) only if both \(M_1 \) and \(M_2 \) accept \(w \) and \(M_3 \) will reject \(w \) if at least one of \(M_1 \) or \(M_2 \) rejects \(w \). However, if either \(M_1 \) or \(M_2 \) do not halt, then \(M_3 \) does not halt. Thus, \(M_3 \) recognizes \(L_1 \cap L_2 \).

(c) Let \(M_1 \) and \(M_2 \) be Turing machines that recognize languages \(L_1 \) and \(L_2 \), respectively. We can construct a Turing machine \(M_3 \) that recognizes \(L_1 \cdot L_2 \). \(M_3 \) operates as follows:

1. On input \(w \), nondeterministically split \(w \) into two parts \(w = w_1w_2 \).

2. Run \(M_1 \) on \(w_1 \). If \(M_1 \) accepts, then go to the next step. If \(M_1 \) rejects, then \textit{reject}.

3. Run \(M_2 \) on \(w_2 \). If \(M_2 \) accepts, then \textit{accept}. If \(M_2 \) rejects, then \textit{reject}.

We note that \(M_3 \) will only accept \(w \) if there exists a branch of computation where \(w_1 \) is accepted by \(M_1 \) and \(w_2 \) is accepted by \(M_2 \). If there is no \(w_1 \) that is accepted by \(M_1 \), \(M_3 \) either halts and rejects or runs forever. The same applies to \(M_2 \) if there exists some \(w_1 \) that is accepted by \(M_1 \) but no suitable \(w_2 \) is accepted by \(M_2 \).

4. To show that a doubly-infinite Turing machine can simulate an ordinary TM, we simply mark the initial tape cell with a special symbol that disallows the machine from moving to the left of the cell.

To show that an ordinary Turing machine can simulate a doubly-infinite Turing machine, instead, we show that a 2-tape TM, which we have shown to be equivalent in power to the ordinary TM, can simulate a doubly-infinite tape. Let \(D \) be a doubly-infinite TM and let \(M \) be our 2-tape TM. We split the tape of \(D \) into two parts and assign each part to a tape of \(M \). Tape 1 of \(M \) corresponds to the part of the tape of \(D \) that contains the input word and everything to the right. Tape 2 of \(M \) contains everything on the tape of \(D \) to the left of the input word in reverse order.

More formally, let \(w_0 \) denote the contents of the tape cell that contained the first symbol of the input word at the beginning of the computation of \(D \). At the beginning of computation, \(M \) must mark the leftmost cell of each tape with some symbol \# so
the machine can tell where it needs to switch tapes. Then if D has a tape uw_0v, Tape 1 of M contains $#w_0v$ and Tape 2 of M contains $#u^R$.

5. We show that $FIN(\Sigma)$ has a correspondence with the set of binary words $\{0, 1\}^*$, which we know to be countable. We also know that the set of words over Σ is countable and can be enumerated in lexicographic order s_1, s_2, s_2, \ldots. We define the characteristic string of a language $L \in FIN(\Sigma)$ to be a binary string $b = b_1 b_2 \cdots b_n$ with

$$b_i = \begin{cases}
0 & \text{if } s_i \notin L, \\
1 & \text{if } s_i \in L.
\end{cases}$$

If s_n is the lexicographically greatest string in L, then we define $s_j = \varepsilon$ for all $j > n$. The string s_n must exist since L is finite. Then every finite language L has a finite characteristic binary string and every finite binary string corresponds to a finite language over Σ. Thus, $FIN(\Sigma)$ is countable.