1. We will show that if we can decide \(L \), then we can decide \(A_{TM} \). Suppose there exists a Turing machine \(R \) that decides \(L \). Then we can construct the following machine to decide \(A_{TM} \):

1. On input \(\langle M, w \rangle \), where \(M \) is a Turing machine and \(w \) is an input word, construct the Turing machine \(M' \), which operates as follows:
 1. On input \(x \), if \(x \neq w \), then skip to the next step. Otherwise, simulate \(M \) on \(w \).
 2. If \(M \) rejects \(w \) or \(x \neq w \), then visit every state except \(q_A \) or \(q_R \). We indicate that we are doing this by writing a special symbol, say \(\zeta \), to the tape. After we have visited every state, enter \(q_R \) and reject.
 3. If \(M \) accepts \(w \), then accept.
2. Run \(R \) on \(\langle M' \rangle \).
3. If \(R \) accepts, then reject; otherwise, accept.

If \(M \) does not accept \(w \), then every state of \(M' \) is visited except for \(q_A \). In this case, \(q_A \) is a useless state and \(R \) accepts. If \(M \) accepts \(w \), then \(M' \) will enter the accepting state on input \(w \) and every other state is visited on input \(x \neq w \). In this case, \(R \) will reject. Thus, \(M' \) has a useless state iff \(w \notin L(M) \).

2. Suppose \(A, B, \) and \(C \) are languages with \(A \leq B \) and \(B \leq C \). Then there are computable functions \(f \) and \(g \) such that \(x \in A \) if and only if \(f(x) \in B \) and \(y \in B \) if and only if \(g(y) \in C \). Consider the function \(h(x) = g(f(x)) \). We can build a Turing machine that computes \(h \) as follows:

1. On input \(x \), simulate a Turing machine that computes \(f \) on input \(x \) which produces output \(y \).
2. Simulate a Turing machine that computes \(g \) on input \(y \).

The output of this machine is \(h(x) = g(f(x)) \) and thus \(h \) is a computable function. Then, \(x \in A \) if and only if \(h(x) \in C \) and therefore, we have \(A \leq C \).

3. Let \(A \subseteq \Sigma^* \) be a language such that \(A \in \text{P} \) and \(A \neq \emptyset, \Sigma^* \). Since we know \(A \in \text{P} = \text{NP} \), we just need to show that \(A \) is \(\text{NP} \)-hard to show that it is \(\text{NP} \)-complete. Let \(B \subseteq \Sigma^* \) be a language such that \(B \in \text{NP} \). We will show that \(B \leq_P A \). Since \(A \) is neither \(\emptyset \) nor \(\Sigma^* \), there exist words \(x \in A \) and \(y \notin A \). This gives us the following reduction:

\[
f(w) = \begin{cases}
 x & \text{if } w \in B, \\
 y & \text{if } w \notin B.
\end{cases}
\]
Because $P = NP$, there exists a polynomial-time deterministic Turing machine that decides B. Therefore, f can be computed by a deterministic polynomial-time Turing machine. Thus, $w \in B$ if and only if $f(w) \in A$ and $B \leq_P A$. Therefore, A is NP-complete.

4. Suppose that $d(L_1, L_2)$ is computable and that there is a Turing machine that computes it, given two context-free grammars G_1 and G_2 that generate L_1 and L_2 respectively. We will show that the language

$$ISE_{CFG} = \{\langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are context-free grammars and } L(G_1) \cap L(G_2) = \emptyset\}$$

is decidable. Suppose that D is a Turing machine that will compute $d(L_1, L_2)$ given context-free grammars G_1 and G_2, where $L(G_1) = L_1$ and $L(G_2) = L_2$. Then we will construct the following machine that decides ISE_{CFG}:

1. On input $\langle G_1, G_2 \rangle$, run D on $\langle G_1, G_2 \rangle$ which computes $d(L_1, L_2)$.

2. If $d(L_1, L_2) = 0$, then reject. If $d(L_1, L_2) \neq 0$, then accept.

Recall that for two words u and v, $d(u, v) = 0$ if and only if $u = v$. Then if $d(L_1, L_2) = 0$, then there exists a word w such that $w \in L_1$ and $w \in L_2$ and therefore $L_1 \cap L_2 \neq \emptyset$. Thus, if $d(L_1, L_2)$ is computable, then ISE_{CFG} is decidable. However, ISE_{CFG} is known to be undecidable. Therefore, contrary to our assumption, $d(L_1, L_2)$ is not computable.

5. First, suppose that $NP = coNP$. We know that there exists an NP-complete problem, say L. Then $L \in NP$. Since $NP = coNP$, we have $L \in coNP$.

Now, suppose there exists a language L such that $L \in coNP$ and L is NP-complete. Since L is NP-complete, every language in NP is polynomial-time reducible to L. Let $L' \in NP$. Then $L' \leq_P L$. But since $L \in coNP$, this implies that $L' \in coNP$. Thus, we have $NP \subseteq coNP$.

Now, observe that by the same reduction, we have $\overline{L'} \leq_P \overline{L}$ for all $L' \in NP$. Note also that $\overline{L'} \in coNP$ and therefore, \overline{L} is coNP-hard. Furthermore, $\overline{L} \in NP$, since $L \in coNP$. But this means that $L' \in NP$ and therefore, $coNP \subseteq NP$.

Thus, $NP = coNP$.