1 The two models

Imagine you are given an automaton \(M \), and you want to decide something about the language \(L(M) \) it recognizes. For example, you might want to know if \(L(M) = \emptyset \), or if \(L(M) \) is infinite. We are interested in efficient (to the extent possible!) methods for deciding these questions.

There are two different models we could consider. In the clear box model, we are given complete information about \(M \). We know all its parts \((Q, \Sigma, \delta, q_0, F)\) explicitly. The name clear box comes from imagining \(M \) as an electronic circuit where all components are completely visible to the analyst.

In the black box model, we are only given very limited information about \(M \), and we can only use the automaton as a “black box” where we feed in inputs to \(M \) and see if they are accepted or not. We are told what its input alphabet \(\Sigma \) is, and we are told what the number of states \(n = |Q| \) is. But nothing else. We do not know \(\delta \) or \(F \).

2 The clear box model

Not surprisingly, in this model, where we have complete information about \(M = (Q, \Sigma, \delta, q_0, F) \), there are efficient algorithms to decide these questions, in most cases. The algorithms are based on considering the transition diagram of the automaton as a labeled, directed graph \(G \), and then using standard graph algorithms to search \(G \).

Let’s start with answering questions about DFA’s.

2.1 Deciding if \(L(M) = \emptyset \)

Here we look at the corresponding digraph \(G \) based on \(M \). If \(M \) accepts some string, then there must be a path from the start state \(q_0 \) to a state of \(F \). Thus, this is just graph reachability, which can be solved in linear time (in the number of nodes and edges) using
What is this automaton M? The answer is an automaton M recognizing the symmetric difference language $\Delta(L(M_1), L(M_2)) := (L(M_1) - L(M_2)) \cup (L(M_2) - L(M_1))$. It is easy to see that $\Delta(L_1, L_2) = \emptyset$ iff $L_1 = L_2$. So given M_1 and M_2 we just construct the automaton of mn recognizing $\Delta(L(M_1), L(M_2))$ and use the algorithm we already saw for checking if $L(M) = \emptyset$.

What is this automaton $M = (Q, \Sigma, \delta, q_0, F)$? On input x, it simulates the automata M_1 and M_2 in parallel, using the state set $Q_1 \times Q_2$. The first component of states simulates M_1 and the second component simulates M_2. Formally we define

- $Q = Q_1 \times Q_2$;
- $q_0 = [q_1, q_2]$;
- $F = F_1 \times (Q_2 - F_2) \cup (Q_1 - F_1) \times F_2$
- $\delta([p, q], a) = [\delta_1(p, a), \delta_2(q, a)]$

One can now prove by induction on $|x|$ that $\delta^*(q_0, x) = [\delta_1^*(q_1, x), \delta_2^*(q_2, x)]$ and hence x is accepted by M iff $x \in \Delta(L(M_1), L(M_2))$.

2.2 Deciding if $L(M)$ is infinite

Here again we look at the corresponding digraph G based on M. We claim that $L(M)$ is infinite iff there is a fruitful cycle in G; that is, a cycle C that has the property that some node in the cycle is reachable from q_0, and from which one can reach some final state.

To see this, note that if there is a fruitful cycle, we can go around it as many times as we want, getting longer and longer strings accepted by M. So $L(M)$ is infinite. On the other hand, note that removing all states not reachable from q_0 does not change $L(M)$, and similarly removing all states from which one cannot reach a final state does not change $L(M)$, either. So do this transformation first. Now any cycle that remains, if there is one, will be fruitful. If there is no cycle, then the graph G is acyclic, and hence there are only finitely many paths from q_0 to a state of F. So $L(M)$ is finite.

To get an efficient algorithm, start with the transition diagram graph G and do the two transformations mentioned above (remove all states not reachable from q_0 and remove all states from which one cannot reach a final state). This can be done in linear time using DFS or BFS. (Think about it; there is an easy trick to avoid doing a DFS/BFS for each final state.) Then we can detect the existence of a cycle using DFS.

2.3 Checking whether $L(M_1) = L(M_2)$

Given two automata $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, of m and n states respectively, we can check if $L(M_1) = L(M_2)$ in $O(mn)$ time by reducing it to the problem of checking if $L(M) = \emptyset$.

But for which M? The answer is an automaton M recognizing the symmetric difference language $\Delta(L(M_1), L(M_2)) := (L(M_1) - L(M_2)) \cup (L(M_2) - L(M_1))$. It is easy to see that $\Delta(L_1, L_2) = \emptyset$ iff $L_1 = L_2$. So given M_1 and M_2 we just construct the automaton of mn recognizing $\Delta(L(M_1), L(M_2))$ and use the algorithm we already saw for checking if $L(M) = \emptyset$.

One can now prove by induction on $|x|$ that $\delta^*(q_0, x) = [\delta_1^*(q_1, x), \delta_2^*(q_2, x)]$ and hence x is accepted by M iff $x \in \Delta(L(M_1), L(M_2))$.

2
2.4 Algorithms for NFA’s

As it turns out, the algorithms we gave above for DFA’s for checking whether $L(M) = \emptyset$ or $L(M)$ infinite also work for NFA’s, pretty much unchanged. (Why?) However, for the third problem, checking whether $L(M_1) = L(M_2)$ for NFA’s, we need a new algorithm. It turns out this problem is PSPACE-complete, which means that nobody currently knows an efficient algorithm, and probably there is not one. (Exercise: why does the construction we gave for DFA’s fail in this case?)

3 The black box model

Now we turn to black box algorithms for these problems.

3.1 Checking if $L(M) = \emptyset$ in the black box model

Here we use the following theorem:

Theorem 1. Suppose M is a DFA with n states. Then $L(M) \neq \emptyset$ iff M accepts a string of length $< n$.

Proof. One direction is clear. For the other direction, assume $L(M) \neq \emptyset$, and let z be a shortest string accepted. If $|z| < n$ we’re done, so assume $|z| \geq n$. But if $|z| \geq n$, we can apply the pumping lemma to it, obtaining some decomposition $z = uvw$ with $|v| \geq 1$ such that $uv^i w \in L(M)$ for all $i \geq 0$. Choose $i = 0$. Then $uw \in L(M)$ and $|uw| = |z| - |v| < |z|$, a contradiction (because z was a shortest string accepted).

To use this theorem, we feed our black box with every possible string of length $< n$. If it accepts at least one string, then $L(M) \neq \emptyset$. Otherwise $L(M) = \emptyset$.

3.2 Checking if $L(M)$ is infinite in the black box model

Here we use the following theorem:

Theorem 2. Suppose M is a DFA with n states. Then $L(M)$ is infinite iff M accepts a string z with $n \leq |z| < 2n$.

Proof. Just as in the previous proof, if M accepts a z with $|z| \geq n$, then the pumping lemma implies that there are u, v, w with $|v| \geq 1$ such that $uv^i w \in L$ for all $i \geq 0$. So $L(M)$ contains, as a subset, the infinite language $uv^* w$.

Now let’s prove the other direction. Suppose $L(M)$ is infinite, but (contrary to what we want) it accepts no z with $n \leq |z| < 2n$. Since $L(M)$ is infinite, M must accept arbitrarily long strings. Among these, let z be one that is of length $\geq n$, but as short as possible subject to this constraint. Assume, to get a contradiction, that $|z| \geq 2n$. Apply the pumping lemma to z. We get a decomposition $z = uvw$ with $|v| \geq 1$ such that $uv^i w \in L(M)$.
for all $i \geq 0$. Choose $i = 0$. Then $uw \in L(M)$ and $|uw| < |z|$. Furthermore, since $|z| \geq 2n$ and $|v| \leq |uw| \leq n$, we have $|uw| \geq n$. So uw is a shorter string of length $\geq n$, a contradiction. So $|z| < 2n$ as desired. \qed

To use this theorem, we feed our black box for M with all strings of lengths ℓ with $n \leq \ell < 2n$. If the box accepts at least one such string, then $L(M)$ is infinite; otherwise it is finite.

3.3 Checking if $L(M_1) = L(M_2)$

To do this, we use the same idea as in the clear box model: $L(M_1) = L(M_2)$ iff $\Delta(L(M_1), L(M_2)) = \emptyset$.

The only problem is, we don’t know M_1 or M_2; we just have black boxes for them!

But this is no problem. We can simulate the automaton for $\Delta(L(M_1), L(M_2))$ on x by running the black boxes for M_1 and M_2 and observing the results, considering that x is accepted iff it is accepted by exactly one of the boxes for M_1 and M_2. This gives us (essentially) a black box B for an automaton M recognizing $\Delta(L(M_1), L(M_2))$.

So it remains to use our black box algorithm for checking if $L(M) = \emptyset$ on this new black box B. We just need to check all strings up to (but not including) the number of states in M. If M_1 has m states and M_2 has n states, then we saw above that a construction for $\Delta(L(M_1), L(M_2))$ has mn states. So it suffices to check all strings of length $< mn$.

This gives the following algorithm for checking if $L(M_1) = L(M_2)$: feed black boxes for M_1 and M_2 with all strings of length $< mn$. If for at least one string one box accepts but the other rejects, then $L(M_1) \neq L(M_2)$. Otherwise $L(M_1) = L(M_2)$.

3.4 Black algorithms for NFA’s

You can now easily check that the two theorems we proved for DFA’s also apply to NFA’s. This gives analogous black box algorithms for checking if $L(M) = \emptyset$ or $L(M)$ infinite.

For checking if $L(M_1) = L(M_2)$, more work is needed, and this is left as an exercise.