1. [10 marks]
Which of the following claims are true? Just answer “true” or “false” for each one. No justification necessary.

(a) [2 marks] If \(L \) is a language, then \(\emptyset L = \emptyset \).

(b) [3 marks] \((a^3)^* = (a^*)^3\).

(c) [2 marks] \(a^n b^n c^n = (abc)^n\) for all \(n \geq 0 \).

(d) [3 marks] \(a(ba)^*b = (ab)^*ab\).

2. [10 marks]
Recall the recursive definition of the DFA extended transition function: \(\delta^*(q, \epsilon) = q \), and \(\delta^*(q, xa) = \delta(\delta^*(q, x), a) \), for \(q \) a state, \(x \) a string, and \(a \) a single letter.

Give a formal proof of the following property of the DFA extended transition function: for all states \(q \), and all strings \(x, y \), we have \(\delta^*(q, xy) = \delta^*(\delta^*(q, x), y) \).

Hints: use induction, and say precisely what you are inducting on. You can use the fact that concatenation is associative. Be sure to distinguish carefully between \(\delta \) and \(\delta^* \) in your proof.

3. [10 marks]
(a) [3 marks] Write \((a \cup b)^*\) as a regular expression without using the symbol \(\cup \) (union) anywhere.

(b) [7 marks] A regular expression \(r \) is said to be in \textit{disjunctive normal form} if it looks like \(r = r_1 \cup r_2 \cup \cdots \cup r_n \) for some \(n \geq 1 \), where none of the regular expressions \(r_1, r_2, \ldots, r_n \) contain the symbol \(\cup \) (union). For example, the regular expression \(a^*b^* \cup (ab)^* \cup (c(acb)^*)^* \) is in disjunctive normal form, but \((a \cup b)^*\) is not. Prove that every regular expression can be written in disjunctive normal form.