1. [10 marks + 2 marks extra credit possible] A string \(x \) is a palindrome if \(x = x^R \). Give a context-free grammar \(G = (V, \Sigma, P, S) \) that generates all the non-palindromes over the alphabet \(\{a, b\} \). Describe explicitly all four parts: \(V, \Sigma, P, S \), and explain your construction in words. You do not need to give a complete formal proof of correctness.

You will get 2 extra-credit marks if your grammar is unambiguous (and you explain correctly why it is).

2. [10 marks] Develop a black-box algorithm to check, given an NFA \(M = (Q, \Sigma, \delta, q_0, F) \) whether \(L(M) = \Sigma^* \). The only information provided to you is
 - \(\Sigma \), the input alphabet;
 - \(n = |Q| \), the number of states in \(M \);
 - a “black box” \(B \) implementing \(M \), which can only by used by entering a string \(x \) as input, and observing whether \(B \) says “accept” or “does not accept” (corresponding to, respectively, \(x \in L(M) \) and \(x \not\in L(M) \)). You can use \(B \) any (finite) number of times.

In particular, you have no information about \(Q \) except its size, and no information about \(\delta \) or \(F \).

Explain your algorithm, argue it is correct, and give an upper bound on the size of the largest string you have to test, as a function of \(n \).

3. [10 marks] Let \(A, B \) be regular languages such that \(A \subset B \) and \(B - A \) is infinite. Show that there exists a regular language \(L \) that “lies infinitely between \(A \) and \(B \)”, that is, \(A \subset L \subset B \) and both \(B - L \) and \(L - A \) are infinite.

Hint: apply the pumping lemma to \(B - A \).