Nine Errors Students Commonly Make When Applying the Pumping Lemma

The pumping lemma for regular languages is the following:

Lemma.

For all regular languages L, there exists a constant n (depending on L) such that for all $z \in L$ with $|z| \geq n$, there exists a factorization $z = uvw$, with $|uv| \leq n$, $|v| \geq 1$, such that for all $i \geq 0$ we have $uv^iw \in L$.

Note that the pumping lemma states a property of regular languages. Hence one cannot use it directly to prove that a language is regular, but one can use the contrapositive (or proof by contradiction) to prove that a language is not regular. The contrapositive is as follows:

If for all n, there exists a $z \in L$ with $|z| \geq n$ such that for all factorizations $z = uvw$ satisfying the conditions $|uv| \leq n$ and $|v| \geq 1$, there exists an $i \geq 0$ such that $uv^iw \not\in L$, then L is non-regular.

One common way people think about the pumping lemma is as follows: you are playing a four-step game against an adversary. The adversary is all-powerful, knows everything, but cannot cheat. Your goal is prove the language non-regular; your adversary is trying to prevent your proof from going through. You take turns choosing various objects:

- **Step 1:** adversary chooses n.
- **Step 2:** you choose $z \in L$ with $|z| \geq n$.
- **Step 3:** adversary chooses a factorization $z = uvw$ with $|uv| \leq n$ and $|v| \geq 1$.
- **Step 4:** you choose i. You “win” and show L is not regular if $uv^iw \not\in L$, no matter what the adversary did in steps 1 and 3. Otherwise you lose: your proof didn’t work.

The following are the nine errors students commonly make in applying the pumping lemma:

Error 1. Choosing a string z that is not in L. For example, suppose $L = \{ww : w \in \{a,b\}^*\}$.

You might incorrectly choose $z = a^n b^n$, which is not in L. At this point it’s easy to “win” — just pick $i = 1$; then $z = uv^1w \not\in L$.

1
Error 2. Not handling all possible factorizations of the string z as uvw. For example, consider

$$L = \{ww : w \in \{a, b\}^\ast\}$$

again. Suppose the adversary chooses n and you choose $z = a^{2n}$. Then the adversary is supposed to choose a factorization $z = uvw$. If, by mistake, you do not think about all possible factorizations of z, you might wrongly choose to look only at the factorization specified by $u = \epsilon, v = a, w = a^{2n-1}$. In this case, you could choose $i = 0$, to get the string $uv^i w = a^{2n-1} \notin L$ and “win”. But you haven’t really “won”, because you didn’t handle all possible ways the adversary could factor z. The adversary could have chosen $u = \epsilon, v = aa, w = a^{2n-2}$, in which case $uv^i w \in L$ for all $i \geq 0$. In fact, if you choose $z = a^{2n}$, then you cannot possibly “win” the game. You need to choose a different z here.

Error 3. Choosing a string z that is not specific enough. Remember: you get to choose any string in L, based on n, that is longer than n in length. Why make the adversary’s job easy? The adversary wants to defeat you by picking a bad factorization. Usually, the more specific you choose your string, the less freedom the adversary will have to respond.

For example, in the language L above, you might have been tempted to choose $z = xx$, where x was any string of length $\geq n$. Then you let the adversary break the string up as $z = uvw = xx$. By picking $i = 0$, you might conclude that $uw \neq xx$, and so obtain a “contradiction”. But this is simply not true! It does not suffice to show that $uv^i w \neq xx$ for a particular x; you must show it for all possible x, since that is the meaning of not being in L.

In fact, this kind of argument cannot succeed with such a general choice of z. For if your string was, say, $z = a^n a^n$, then the adversary can choose $u = \epsilon, v = aa$, and $w = a^{2n-2}$. In this case, no matter what i you choose, the resulting string $uv^i w \in L$, and you cannot “win”.

Moral of the story: construct your string z with care.

Error 4. Choosing a string z that does not depend on n. For example, in the language L above, suppose you picked $z = abab$. The problem is that you don’t know what n is; you must be able to account for all possible values of n picked by the adversary. If the length of the string you picked is not a function of n, you are in trouble.

Error 5. Choosing a negative or fractional i. This is not allowed by the statement of the pumping lemma. In looking at $uv^i w$, you must choose an i that is a non-negative integer. Furthermore, since $z \in L$, considering the case $i = 1$ will never win.

Error 6. Applying the pumping lemma to a regular language. For example, consider

$$L = \{0^x 1^y : x + y \equiv 0 \pmod{4}\}.$$

This language is regular, but you might be tempted to try to prove it is not regular via the pumping lemma. You might pick, for example, the string $z = 0^{4n+3}1$. Then let the adversary factor z as $z = uvw$. Hence $u = 0^n, v = 0^i, and w = 0^i1$, where $a + b + c = 4n + 3$. Then
you might assert, “We can choose \(i \) such that \(uv^i w = 0^{4n+3+i}b_1 \), and then clearly for all \(b \) we have that \(x + y = 4n + 3 + ib + 1 \) is not a multiple of 4.”

The problem with this claim is that it is false. For example, if \(b = 4 \), then \(4n + 3 + ib + 1 \) is a multiple of 4 for all \(i \).

Moral here: be careful about what you assert, and be fairly confident that the language is indeed non-regular before you begin your proof.

Error 7. Assuming that all long strings in a regular language \(L \) can be written as \(uv^i w \) for some \(i \geq 2 \). This is not necessarily true. For example, if \(L = \{0, 1, 2\}^* \), then you might be tempted to conclude that there exist words \(u, v, w \) such that all sufficiently long strings in \(L \) can be written as \(uv^i w \) for some \(i \geq 2 \). This is simply false, as there exist strings in \(L \) that contain no substring of the form \(vv \) — this was first proved by the Norwegian mathematician Axel Thue in 1906.

Thue’s example also kills the same “theorem” when \(u, v, \) and \(w \) are allowed to lie in some finite set.

Error 8. Trying to use the pumping lemma to prove that a language is regular. The pumping lemma is a statement about a property of regular languages. It says, “If \(L \) is regular, then \(L \) has the following property.” Hence one cannot use the pumping lemma to prove that a language is regular; one can only use it to prove a language is non-regular.

In fact, there are languages which are non-regular, but nevertheless satisfy the conclusions of the pumping lemma! One example is the following language:

\[L = \{a^i b^j c^k : i = 0 \text{ or } j = k\}. \]

Suppose \(z \in L \) is the string chosen to pump. There are two cases.

Case 1: \(z = b^j c^k \) for some integers \(j, k \). Pick \(n = 1 \); hence we may assume either \(j \geq 1 \) or \(k \geq 1 \). Then there exists a factorization \(z = uvw \), where \(u = \epsilon, v = b \) (if \(j \geq 1 \)) or \(v = c \) (if \(j = 0 \)) \(w \) is the rest of the string, and then \(uv^i w \in L \) for all \(i \geq 0 \).

Case 2: \(z = a^i b^j c^j \), for some integers \(i, j \) with \(i \geq 1 \). Pick \(n = 1 \). Then there exists a factorization \(z = uvw \), where \(u = \epsilon, v = a \), and \(w \) is the rest of the string, and \(uv^i w \in L \) for all \(i \geq 0 \).

The moral of the story is that the ordinary pumping lemma is not powerful enough to be able to directly prove the non-regularity of certain non-regular languages. Other techniques are needed.

Error 9. Choosing a string \(z = z(n) \), depending on \(n \), in such a way that

\[\{z(n) : n \geq 1\} \]

is a regular language.
If you choose the string $z = z(n)$ to depend on n in such a way that

$$L_z = \{z(n) : n \geq 1\}$$

is itself regular, then the pumping lemma cannot succeed in proving L non-regular. For suppose it did. Then for each way of factoring $z = uvw$ with $|uv| \leq n$ and $|v| \geq 1$, there would be a choice of $i \geq 0$ such that $uv^iw \notin L$. But since $L_z \subseteq L$, $uv^iw \notin L_z$. Hence by the pumping lemma, L_z itself would not be regular. But L_z is in fact regular — a contradiction.

Hence one must choose the string $z = z(n)$ in a sufficiently “irregular” way to ensure that L_z itself is not regular. As an example, consider the language

$$L = \{ww : w \in \{a, b\}^*\}.$$

One might be tempted to choose the string $z = z(n) = a^{2n}$, which is certainly in L. However, the associated language is

$$L_z = \{a^{2n} : n \geq 1\} = \{a\}^+,$$

which is regular, so this choice for z cannot possibly succeed in proving that L is non-regular. So instead you would need to pick something like $z = a^n ba^n b$.

4