Assignment 4: Topics in Functional Programming

CS 442/642

Due March 12th in class

Part A—The ML Module System

Pages 165–167 of your course notes give an implementation of an interpreter for deterministic finite automata (DFAs) using ML functors. For this portion of the assignment, your first task is to design a similar interpreter for nondeterministic finite automata (NFAs).

1. An NFA interpreter

Recall that nondeterministic finite automata differ from their deterministic counterparts by offering a choice of 0 or more alternative next states for each given (state, input) pair. Such a machine accepts if there exists a set of choices that land the machine in an accepting state when the input is consumed.

Since ML is not a nondeterministic language, we will simulate the action of the NFA by keeping track of the set of states the automaton could be in after having read a given sequence of characters. If, after having consumed the input, at least one of the machine’s possible configurations is an accepting state, the machine accepts.

For this task, you will modify the DFA signature in the course notes so that it now specifies the characteristics of an NFA. You will then write a functor \texttt{NFA} with the following interface:

```ml
functor NFA (Spec : NFASIG) : sig
  val run : Spec.Sigma list -> bool
end
```

This functor accepts a specification for an NFA and outputs a structure that provides a single function \texttt{run} that determines whether a given input is in the language specified by the NFA.

2. DFAs are NFAs

Since every DFA is implicitly an NFA, it would be useful if your NFA functor could accept and interpret DFA specifications. To make this possible, you will write a functor called \texttt{DFAToNFA} that takes a DFA specification and outputs an equivalent NFA specification. (Note: since every DFA is implicitly an NFA, this functor should be \textit{very} simple.)

3. Building Blocks

One of the nice features of regular languages is that they are closed under many operations. As a result, we have many tools at our disposal for creating new regular languages from old ones. In particular, we may specify a regular language as the intersection of two other regular languages. For this task, you will use closure under intersection as the basis for a tool to build new DFAs from old ones. In particular, you will write a functor called \texttt{Intersection}, parameterized by two structures called \texttt{Spec1} and \texttt{Spec2}, with signature \texttt{DFASIG}, and returning a structure with signature \texttt{DFASIG} that recognizes the intersection of the languages of the two input automata.
4. Discussion

1. What problem would we run into if we tried to write a functor to compute a DFA that recognizes the union of the languages of two input automata? How could we modify DFASIG to fix the problem?

Notes

1. The purpose of this portion of the assignment is to explore a useful application of the ML module system, and not to examine how much you remember from automata theory. Therefore, if you need a refresher, feel free to come to office hours to discuss some of the necessary constructions. You are also permitted to discuss DFA constructions on Piazza.

Part B—Lazy Programming

The function \texttt{lazymap} takes a function and a stream as parameters and returns the stream that results from applying the function to every item in the stream.

a) Implement \texttt{lazymap} in Scheme. Use delay and force.

b) Implement \texttt{lazymap} in ML. Use thunking.

c) Implement \texttt{lazymap} in Haskell.

Part C—Haskell and Type Classes

Start-up code for this question can be found at \url{http://www.student.cs.uwaterloo.ca/~cs442/secd.hs}

Landin’s SECD Machine

A popular way to specify the semantics of a programming language is to describe an abstract “machine” that performs the computation specified by a program in the language. Several abstract machines exist for interpreting terms in the untyped \(\lambda\)-calculus. Of these, the most famous is Peter Landin’s SECD machine.

The SECD machine consists of four stacks: S, E, C, and D. These are called, respectively, the Stack, the Environment, the Control, and the Dump. The purpose of each is roughly as follows:

- the stack holds the results of computations already performed;
- the environment is a map from program variables to the terms to be substituted for them;
- the control holds the current and remaining computations to be performed—its contents “direct” the actions of the machine;
- the dump is a store for surrounding context when evaluating nested expressions.

We will use the notation \(\langle S, E, C, D \rangle\) (denoting the contents of each of the four stacks) to represent a configuration of the machine. Initially, S, E, and D are empty, and C contains the expression to be reduced.

The behaviour of the SECD machine is defined by the following state transitions:

- \(\langle S, E, x : C', D \rangle \rightarrow \langle\text{lookup}(x, E) : S, E, C', D \rangle\)—look up a variable in the environment and place it on the stack
- \(\langle S, E, \lambda x.M : C', D \rangle \rightarrow \langle\langle x, M, E \rangle : S, E, C', D \rangle\)—convert an abstraction into a closure, containing the variable and body of the abstraction, and the current environment; place the closure on the stack
• \((S, E, (MN) : C', D) \rightarrow (S, E, N : M : @ : C', D)\)—split up the components of an application and put them on the control separately in reverse order (so that \(N\) is evaluated first), followed by a special directive, @, meaning “apply”

• \((S, E, \text{prim} : C', D) \rightarrow (\text{prim} : S, E, C', D)\)—if a primitive value is on the control, then transfer the primitive to the stack unchanged

• \((\text{prim} : N : S', E, @ : C', D) \rightarrow (S', E, \text{prim}(N) : C', D)\)—if a primitive function is on top of the stack and an “apply” directive is on the control, then apply the primitive function to the next item on the stack, and put the result on the control in place of them

• \(((x, M, E_1) : N : S', E, @ : C', D) \rightarrow (((), (x, N) : E_1, M, (S', E, C') : D))\)—if a closure is on top of the stack and an “apply” directive is on the control, then push a triple consisting of the current stack (minus the top two elements), environment, and remaining control, onto the dump

• \((M : (), E, (), (), (S', E', C') : D') \rightarrow (M : S', E', C', D')\)—when a computation is exhausted (control is empty and stack has a single element on it), restore the previous context from the dump, and push the current result onto the top of the restored stack

• \((M : (), E, (), ()) \rightarrow \text{done}: \text{return } M\)—if the dump is empty when the computation is exhausted, then the machine halts

• all other configurations are erroneous

1. Representing \(\lambda\)-terms

You will represent \(\lambda\)-terms using the following data declaration:

```haskell
data Term = Var String | Abs String Term | App Term Term | Prim Primitive | INT Int
```

This divides the set of all terms into five classes, with the obvious meanings (for the meaning of \texttt{Prim} see the section on Primitives). Unfortunately, when we type, for example, \texttt{Abs "x" (Var "x")} at the Haskell prompt, Haskell returns an error, as it does not know how to display \(\lambda\)-terms on the screen. To remedy this problem, we need to make \texttt{Term} an instance of the class \texttt{Show}. To do this, you must provide an implementation of the function \texttt{show}, which maps \(\lambda\)-terms into strings. For example, typing the following at the Haskell prompt:

```haskell
App (Abs "x" (App (Var "x") (Var "x"))) (Abs "x" (App (Var "x") (Var "x")))
```

should cause Haskell to return:

```haskell
((\x.(x x)) (\x.(x x)))
```

BONUS: Arrange for the term to be printed with minimal parenthesization. If you attempt this, be sure to get it right, because if you leave out a pair of parentheses that are actually needed, you risk losing marks on the main question.

2. Representing stack contents

Take a close look at the kinds of information that are stored on each of the machine’s four stacks. Come up with four data declarations:

```haskell
data SContents = ...
data EContents = ...
data CContents = ...
data DContents = ...
```
Each data declaration above indicates the type of the data that its respective stack can store. At the same time, implement a function `lookUp` that performs lookups in your environment stack. Note: do not be surprised if your data declarations are not quite right on your first attempt.

Also include the following data declaration for configurations of the entire machine:

```haskell
data SECDConfig = SECD ([SContents], [EContents], [CContents], [DContents])
```

3. Implementing the machine

Code the state transitions of the SECD machine in Haskell, by writing a function `secdOneStep` that maps an SECD configuration (of type `SECDConfig`) to the one that immediately follows it, according to the rules given to you. Then write a function `reduce` that takes a λ-term as a parameter, and passes it through `secdOneStep` repeatedly until a final answer is produced, which it returns to the caller.

You will notice that the value returned by the machine is not quite a λ-expression of type `Term`. For example, if we feed `λx.x` into the machine, we get back `⟨x, x, ⟨⟩⟩`, which is a closure of the function `λx.x` (the first `x` is the variable of the abstraction, and the second `x` is the body) in an empty environment. Thus, you will need to implement functionality to translate closures back into λ-expressions. In general, the closure `⟨x, M, E⟩` is translated back to `λx.Mσ` where `σ` is the set of substitutions `{ [N/y] | ⟨y, N⟩ ∈ E }`. (Note that the `N`’s themselves may be closures, so this process may have to be iterated.)

To aid debugging and testing, make the type `SECDConfig` a member of class `Show`. When an SECD configuration is displayed on the screen, it should have a four-line representation, as follows:

```haskell
S = ⟨suitable representation of S⟩
E = ⟨suitable representation of E⟩
C = ⟨suitable representation of C⟩
D = ⟨suitable representation of D⟩
```

4. Primitives

The way it is designed, the SECD machine is difficult to test unless we add some primitives to the λ-calculus. Therefore, we augment the λ-calculus to include integers and some primitive integer operations.

When the SECD machine encounters an integer or a primitive on the control, it simply transfers the integer or primitive, unchanged, onto the stack.

The only primitives you are required to support are `Succ`, which computes the successor of its argument, and `IsZero`, which tests whether its argument is the integer 0. You may support other primitives to provide additional functionality if you like, but this is not required. Supporting binary primitives is particularly difficult, but not impossible (and not required).

If you look at the data declaration for terms, you will see a type `Primitive`. You will need to define this type. Make it an enumeration over the primitives your implementation will support. To implement application of primitives to data, write a function `applyPrim` of type `Primitive -> Term -> Term` (this technique of implementing function application is known as defunctionalization), and use `applyPrim` when the SECD machine needs to apply a primitive.

Notes

1. The tasks in this portion of the assignment are not algorithmically difficult; your main difficulty is likely to be getting your expressions to type-check. Seek assistance from course staff as necessary.

2. It is indicated, in the description of the SECD machine’s state transitions, that there exist erroneous states from which no transition is possible. Given well-formed input, it is not possible, assuming your machine is implemented correctly, to reach such states. Haskell does not have exceptions; therefore, if we wanted to catch these error states, we would need to use some other mechanism, e.g. `Maybe` types. However, you are encouraged to simply leave these cases unhandled. Then, if Haskell reaches such a configuration, you will get a runtime error, with reasonably useful debugging information.
3. To save you some time, you are not being asked to demonstrate any portion of this assignment. However, be sure to test your code thoroughly and carefully. If you are having difficulty devising suitable test cases, contact course staff and we can assist you.

 Submission

Submit the code portion of your solutions to parts A, B, and C as three separate source files. You should submit your source code on paper and electronically, via the MFCF submit command. The distribution of the marks for this assignment is 25% each for parts A and B, and 50% for part C. The assignment is due by the beginning of class on the due date. As always, you are encouraged to seek help from course staff as needed.