
Facade Design Pattern 
 
Team WELM: Elijah Moreau-Arnott (emoraua), Weiyi Dai (w27dai), Matthew Hayashida 
(m2hayash), Lucy Yu (yf2yu) 
 
Purpose & Intended Use Case 
The Facade Design Pattern is a simplified interface to a subset of a complex existing 
system. The intended use case of the Facade Design Pattern is to shield the user from complex 
implementation details of a system, while providing the user a clear and concise set of 
functionalities through an interface. 
 
Vocabulary 

● Subsystem: a package or a class that provides complex functionalities 
● Facade: an interface that provides a set of functionalities to the user, and abstracts away 

the complexities behind these functionalities which lie behind subsystems 
● Client: a user who utilizes the facade 

 
Known Consequences 
Advantages 

● Hides implementation details from the clients 
● Simple and easy interface for the clients to use 
● Weak coupling between clients and the system, so changes can be made to the system 

without affecting the clients 
Disadvantages 

● Clients cannot access underlying classes, and certain functionalities might be 
unavailable to clients 

● It usually does not add any extra functionalities, just simplifying it for the clients to use 
 
Non-functional Properties 

● Lowers Complexity: provides a clean and simplified interface for the client to use, and 
reduces the complexity of having the client call methods in various subsystems 

● Improves Scalability: to create additional interfaces, the maintainer of the facade can 
simply add new interfaces in the facade for clients to use 

● Improves Usability: for clients, this pattern allows them to readily access key 
functionalities with minimal hassle 

 
Similar Patterns 

● Adapter: repurposes an existing interface to match what a client is expecting, whereas 
Facade defines a new interface for clients 

● Mediator: abstracts functionalities of existing classes via a central mediator that has a 
multi-directional protocol and could also add functionalities. Facade abstracts 



functionalities and follows a unidirectional protocol (the facade is unknown to the 
subsystem classes) and only specifies existing functionalities in the subsystems 

 
Structure and Runtime Behavior 
 
Included below are diagrams that illustrate an example using the Facade Design Pattern. This 
example visits the familiar scenario of interacting with a bank teller, which is the facade. A client 
can ask the bank teller to perform a number of actions. Depositing money, withdrawing money, 
and transferring money are three common actions. When the teller executes these actions, 
several systems are accessed and operations are performed on these systems. All of these 
complex operations are abstracted away from the client, as the client only needs to ask the 
teller to perform a general operation. It should also be noted that the facade usually only 
performs a subset of all the functionalities available in the subsystems that are abstracted away. 
In this example, there may be functionalities in the Cash System that the bank teller does not 
interact with for the operations offered to the client. 

 


