
Interpreter Architectural Style

Group Name: CJ2

Members:
 Sung Wook An (sw2an)
 Weifeng Jiang (w48jiang)
 Bo Liu (b69liu)
 Jinsea Park (j54park)
 Sawim Zargar (sazargar)

Q1:- What is interpreter architectural style? What are its components and
connectors? (define) (Jinsea)

The interpreter is an architectural style that is suitable for applications in which the most
appropriate language or machine for executing the solution is not directly available. The
style consists of a few components which are a program that we are trying to run,
interpreter that we are trying to interpret, current state of the program and the interpreter
and finally memory component to hold the program, the current state of the program
and the current state of the interpreter. The connectors for interpreter architectural style
is procedure calls to communicate between the components and direct memory
accesses to access memory.

Q2: - Impose specific topological constraints? (diagram) (Weifeng Present)

The interpreter has 4 compositions:
 An interpreter engine: finishes the interpreter work
 Data store field: contains the pseudo code
 A data structure: records the current state of the interpreter engine
 Another data structure: records the progress of the interpreted source code

Input: Input to the interpreted program component is sent to the program state, where it
is read by the program running on the interpreter

Output: Program output is placed in the program state, where it can result in output from
the interpreted program component's interface

Q3: - Most applicable to specific kinds of problems? (Calvin)
Programming Language Compilers: Java Smalltalk
Rule Based Systems: Prolog Coral
Scripting Languages: Awk Perl
Micro coded machine: Implement machine code in software.
Cash register / calculator: Emulate a clever chip using a cheap one.
Database plan: The database engine interprets the plan.
Presentation package : Display a graph, by operating on the graph.

Q4: - Engender specific kinds of change resilience? (advantage) (Sawim)
There are some distinct advantages of using an interpreter architecture style:

 By having the behaviour of the system defined by a custom language or data
structure, software development becomes easier

 This facilitates the portability and flexibility of application or languages across
various platforms

 Allows us to simulate non-implementable hardware which keeps costs of
hardware affordable

 As each line is interpreted, the results of the execution are visible which makes
debugging easier

 Errors are caught as they happen since the interpreter stops when it can’t
interpret a line

 Interpreting syntax is also faster and uses less memory than compiling syntax
and then executing it as the latter requires creating and storing the machine code
which is then executed whereas the interpreter just deals with the source code
itself

Q5: - Have any specific negative behaviours? (disadvantage) (Sawim)
There are some distinct disadvantages to using an interpreter architecture style:

 Since there is no intermediate language conversion step which is stored to be
executed, there is no option to optimize the code at a lower level as is done in a
compiler

 Extra level of indirection make executing code using an interpreted slower than
executing compiled code - this is because the interpreter must evaluate the
source code every time whereas the compiled code is in machine code and can
be executed very fast

Q6: - Support/inhibit specific NFPs?(Caleb)
Portability and flexibility of application or languages across various platforms

Virtualization. Machine code intended for one hardware architecture can be run on
another using a virtual machine, which is essentially an interpreter
Behaviour of system defined by a custom language or data structure; makes software
easier to develop and understand.
Supports dynamic change(Efficiency)
the interpreter usually just needs to translate the code being worked on to an
intermediate representation (or not translate it at all), thus requiring much less time
before the changes can be tested.
“Sandbox” security

An interpreter or virtual machine is not compelled to actually execute all the instructions
the source code it is processing. In particular, it can refuse to execute code that violates
any security constraints it is operating under.
For example, JS-Interpreter is a sandboxed JavaScript interpreter written in JavaScript.
It allows for execution of arbitrary JavaScript code line by line. Execution is completely
isolated from the main JavaScript environment. Multiple instances of the JS-Interpreter
allow for multi-threaded concurrent JavaScript without the use of Web Workers.

EXAMPLE:
In our example, we’ll first start by quickly explaining how a compiled style works. Then
to illustrate the interpreted style we’ll quickly identify each other as the different
components. We’ll walk through a code example to show how each line is interpreted
and how by changing part of the syntax, the interpreter and output are affected.

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Virtual_machine

