
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

What is a RT System?

A RT system (RTS) is a system that must respond to
each external event within a finite and specifiable
amount of time, called the event’s time limit.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

RT System, Cont’d

g hard RTS: a missed deadline ⇒ failure of the
system

e.g., air-traffic control: a missed deadline ⇒ people
die

g soft RTS: a missed deadline costs in some way, but
the system may be able to recover, and costs vary

e.g., streaming video: a missed deadline ⇒ dropped
frames and degredation of video and audio quality

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Characteristics of a RT OS

g controls a set of devices,
g event driven,
g runs indefinitely, like while (1) { … }.
g bounded time responses
g embedded in a dedicated system comprising the

computer and the devices

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

RT Software Structure

RTOS

Hardware

RT Kernel

System Processes

Application

Environment
External

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Processes

Each activity is abstracted as a process or task.

These notes and the literature use these two terms
interchangeably.

Each process:

g communicates with other processes to control
decision making and

g generates and receives external events.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Virtual CPUs

A CPU uses its registers to execute the instructions in a
stored program using data in its environment, so that
when the program says x = 1;, the cell for x in the
CPU’s environment gets the value 1.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Virtual CPUs, Cont’d

We could have a single CPU run many different
activities in cycle:

x x y1 20

Π
registers

x = 1;

switch

y = 2;

switch

x = 1;

switch

but then the code for each activity has to contain code
to switch between activities.e.g., to go on to next one.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Virtual CPUs, Cont’d

We pretend that we have an unbounded number of
CPUs, each doing one activity, i.e., executing the
activity’s code in its environment.

x x y1 20

Π Π

x = 1; x = 1; y = 2;

Π
registersregisters

registers

Now no activity has to know about another to switch to
others.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Virtual CPUs, Cont’d

But we cannot implement the pretension, so we use
processes.

A process is a virtual CPU, a data item with the same
registers as a CPU.

x x y1 20

π π π

x = 1; y = 2;

Π

registersregisters
registers

registers

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Note also that two processes executing the same
program can share one copy of the program, so long as
each has its own copy of the data environment and no
process modifies any code.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Virtual CPUs, Cont’d

That each process:

g communicates with other processes to control
decision making and

g generates and receives external events.

Is this high-level view.

For now, we take the low-level view of the first figure
in which each activity switches to the next.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Cycle Execution (Polling)

Suppose a system has N tasks to perform repeatedly,
e.g., fetch input, react, etc.

while (1) {
doTask1();
doTask2();
…
doTaskN ();

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Example: Device I/O

while (1) {
if (deviceInputReady()){

c=readInput(); /* Activity 1
changeState(c);

}
if (outputAvailable() &&

deviceOutputReady()){
c=getOutputCharacter(); /* Activity 2
writeOutput(c);

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Note

No activity busy waits or busy loops.

Why not?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Why No Busy Waits?

g If device is not ready, could read twice before
write, and vice versa.

What would happen if you were busy waiting?

g ∴, need buffered access to devices.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

Buffered Access

Computer

transmit register

transmit register

device
serial

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Polling, Cont’d

Each iteration of the polling loop executes each of the
N tasks once.

For each task t i , let

f i ≡ the function (procedure, code) that is executed
by t i .
c i ≡ the maximum time needed to execute f i .
T i ≡ the maximum time that may elapse between
successive executions of t i .

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Polling Loop Code

while (1){

f 1;
f 2;
…
f N;

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

Time Analysis

Worst case run time:
i = 1
Σ
N

c i

Real-time requirement: ∀ j ,1≤ j≤N (
i = 1
Σ
N

c i ≤T j)

i.e.,
i = 1
Σ
N

c i ≤
1≤i≤N
min T i *

What if condition * is not satisfied?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Scenario 1

Some task, say t 1, has a short service period, i.e.,

T 1 <<
i = 1
Σ
N

c i

Then perform t 1 more often, say every other time:

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Scenario 1, Cont’d

while (1){

f 1; f 2;
f 1; f 3;
…
f 1; f N;

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

Scenario 1, Cont’d

To satisfy t 1’s requirements: c 1 +
2≤i≤N
MAXc i ≤T 1

and to satisfy other tasks’ requirements:

(N − 1) ×c 1 +
i = 2
Σ
N

c i ≤
2≤i≤N
min T i

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

Scenario 2

Task t 1 has a long execution time c 1 and a long
service period T 1

Split t 1 into two parts a and b:

f a with execution time c a , and
f b with execution time c b ,
with c a + c b ≥c 1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

Scenario 2, Cont’d

boolean partA = true;
while (1) {

if (partA){

f a(); partA = false;
} else {

f b(); partA = true;
}
f 2; …
f N;

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

Scenario 2, Cont’d

Constraints:

c a + c b + 2×
i = 2
Σ
N

c i ≤T 1

MAX(c a ,c b) +
i = 2
Σ
N

c i ≤
2≤i≤N
min T i

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

Assignment 1 Devices

g terminal, input and output
g train, input and output
g clock

Managing State: DFAs, counters, queues

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

Example, Display Clock on Terminal

Read documentation

Interval Timer (PIT)
Programmable

Clock

transmit register
task

output
Terminal

task
Clock

(register)

counter

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

Clock Polling Loop

while (1) {
clock();
terminalOutput();

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

Clock Polling Loop, Cont’d

clock(){
readClockCounter();
if (counterChanged()){

formatTime();
if (bufferSpaceAvailable())

writeToBuffer();
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

Clock Polling Loop, Cont’d

terminalOutput(){
char c;
if (!bufferEmpty() && transmitReady()){

c=bufferRemove();
writeTransmitRegister(c);

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

Wyse Terminal

(1,1)

(1,24)

(80,1)

(80,24)

cursor

MM:SS.S

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

Wyse Terminal, Cont’d

Escape sequences are commands:

For example:

Position cursor is “esc [row ; col H” with no spaces

e.g., to position at row 12, column 24:

\033[12;24H

Clear screen is “esc [2 J” with no spaces, i.e.

\033[2J

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Assignment 1 Requirements

Documentation:
g operating instructions, i.e., user’s manual
g program description

f main tasks
f state management, i.e., queues, DFAs, …
f diagram
f tour of source code
f etc.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

Assignment 1, Cont’d

Train commands:

g tr trainNumber speed

g rev trainNumber

g sw switchNumber direction

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

Assignment 1, Cont’d

Memory management:

g no malloc, new

g Memory is statically allocated, e.g.,

struct x y [max]

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

RT OS

The purpose of a RT OS is to isolate the programmer
from:

g explicit context switching
g state management, synchronization, and

communication
g low-level device management

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

Requirements for a RT OS

g Asynchronous handling of events from external
devices

g Explicit process abstraction, with each task:
f having a separate address space
f scheduled asynchronously according to its

priority
f preemptable

g Task communication and synchronization

g Time

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 38

RT Software Structure

RTOS

Hardware

RT Kernel

System Processes

Application

Environment
External

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 39

RT Kernel Services

g context switching
g scheduling of processes
g communication among processes, with and without

synchronization
g interrupt handling

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 40

Task Abstraction

Each task or process has a unique identifier (TID or
PID)

Each task, t, requires:

g kernel state, i.e., a task descriptor, containing
essential state information about t

g t’s code, which may be shared with other tasks
g t’s data space, including a stack for variables and

temporaries
g t’s parent task, the task which created t; not defined

for initial task

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 41

Task Abstraction, Cont’d

Note that the kernel state for t, addressed by t’s PID,
will probably contain, a copy of the PID, pointers
pointing to the other three bullet items, and other data

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 42

Task State

At any time, a task is in exactly one of three states:

1. running (or active), i.e., assigned to a real CPU
which is running on its behalf

2. ready, i.e., not running, but ready to run
3. blocked, i.e., not running, but not ready to run,

because the task is waiting for data which are not
ready.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 43

Task State, Cont’d

kernel requestkernel request satisfied

pre-empt or relinquish

dispatch

RunningReady

Blocked

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 44

Task State, Cont’d

Note that both ready and blocked are not running, but
the reasons for not running are different. In blocked,
the task itself has decided that it is not ready. In ready,
the external system has decided that some other task
should be running.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 45

Kernel Code

The kernel

g is itself a program and maintains its own data space
and

g implements the task abstraction using software
interrupts.

To do kernel entry, a task will do:
int n (assembly, not C)

To do kernel exit, the kernel will do;
iretl

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 46

Kernel Code, Cont’d
kernel(){

initialize();
createFirstProcess();
while(1){Request request;

request = getNextRequest();
switch(request){

case req0: …
case req1: …
…

}
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 47

Kernel Code, Cont’d

getNextRequest():
g determines the next active process
g dispatches the next process, with a context switch

getNextRequest(){Task active;
active = getActiveProcess(); /*scheduler*/
return(exitKernel(active)); /*context switch*/

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 48

Kernel Project

The Kernel Project has 3 parts:

1. Process Creation and Context Switching
2. Communication
3. Devices, Events, Time

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 49

Part 1

Part 1 is about:

g process creation
g context switching
g memory management
g scheduling

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 50

Some Primitives

Pid Create(char* progName, int priority)
/* create a named process at a priority */

void Pass()
/* make another process running,

while leaving this one ready */

void Exit()
/* kill the executing process */

Pid MyPid()
/* get executing process’s PID */

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 51

Each Task is a Program

kernel −g++→ kernel
entry.c → 452-post.py
create.c → sequence of

hello −g++→ hello modules loaded
hello.c |___| by GRUB on EOS

ELF
format cc

c
c
c
c
c
c
c

452-post.py is in the course account at
public/tools/bin/452-post.py

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 52

Boot Process

GRUB (GNU’s Boot Loader) implements the
Multiboot specification, …

a single interface to boot a variety of OSs.

loader.kernel.x mentioned in the next slide is in
public/examples/kernel

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 53

EOS Memory Map

loader.kernel.x

2MB

1MB

640K

memory
free

and modules
your kernel

VGA, etc.

low memory

0x000000

0x2000000

0x1000000

0x0A0000

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 54

Kernel Loading

Kernel loading with multiboot.S found in
public/examples/kernel

public/examples/kernel/crt0.S:

g executes before main
g linked in by gcc
g sets up task’s data segment

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 55

Multiboot Specification

Kernel is located with two values pushed on to its
stack:

magic

mbiaddr

Sanity check

address of multiboot info struct

This is how you locate modules

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 56

The Way Things Work

A normal program is invoked by a process which calls
the program with its paramaters.

A normal main program is invoked by a system
process which calls the main program with its
parameters.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 57

The Way, Cont’d

A kernel is different.

There is no previously existing process to invoke it.

So the boot software must build, by artificial means,
the stack and data that the kernel software would
expect to be there if the kernel were invoked in the
normal manner, with its parameters passed, i.e., the
booter must fake it.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 58

The Way, Cont’d

Once the stack and all data are laid out, the booter
jumps to the first instruction of the kernel to effectively
awaken it, …

and the CPU executes the kernel code with the stack
and all other data set right.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 59

Multiboot Specification, Resumed

kernel:
int main(unsigned long magic,

multiboot_info_t * mbiaddr){
…

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 60

Multiboot Info Struct

typedef struct multiboot_info
{

…
unsigned long mods_count; /* number of modules */
unsigned long mods_addr; /* address of first

module record (module_t *) */
…

} multiboot_info_t;

Note that we are using unsigned long for all data,
even pointers.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 61

Module Records

typedef struct module
{

unsigned long mod_start; /* address of module start */
unsigned long mod_end; /* address of module end */
unsigned long string; /* name of module */
…

} module_t;

Note that we are using unsigned long for all data,
even strings.

