
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Intel x86 Architecture

g Registers
g Segmentation
g Global Descriptor Table

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

8 General Purpose Registers

8 general-purpose registers (GPRs), each 32 bit:

EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI

ESP is a.k.a. the Stack Pointer

EBP is a.k.a. the Base Pointer

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

16-bit Versions of 8 GPRs

AX, BX, CX, DX,

SP, BP, SI, DI

Each of these is nothing more than the lower 16 bits of
the corresponding E register.

Each of the first four has a high 8 bits and a low 8 bits:

AH, AL, BH, BL, CH, CL, DH, DL,

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

Segmented Memory

Each address reference is confined to one segment, i.e.,
a slice of memory, and is represented as an offset from
the start of a segment:

physicalAddress = startOfSegment + memoryOffset

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Segment Registers

CS, DS, ES, FS, GS, SS

each 16 bits

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Stack Segment (SS)

Segment

relative to SS

of ESP
is the value

This distance

ESP

SS

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

The Available Segments

SS Stack Segment
CS Code Segment
DS Data Segment
ES Extra Data Segment
FS Extra Data Segment
GS Extra Data Segment

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Available Segments, Cont’d

A program may not reference addresses outside the
bounds of its segments.

This is memory protection.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Segment Register Contents

Each segment register effectively specifies:

g lower bound for memory accesses,
g upper bound for memory accesses,
g access rights, i.e., read|write|execute,
g etc.,

for its segment.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

All This in 16 Bits?

How do you pack all this information in a 16 bit
segment register?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Global Descriptor Table

Each segment register is an index into a table called the
Global Descriptor Table (GDT)

The GDT is an array of 8-byte entries.

Each entry indicates:
g lower bound for memory accesses,
g upper bound for memory accesses,
g access rights, i.e., read|write|execute,
g etc.,
for its segment.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Example

If DS = 0x28 (0d40), the memory reference:

Then, DS:0x34 means “Add 0x34 to the base address
of GDT entry DS/8 = 40/8 = 5.”

So, if GDT[5] has base address = 0x100, then
DS:0x34 means physical address 0x134, …

provided that GDT[5] has an upper bound of at least
0x34.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Task Segments

Each task, including the kernel, needs 2 entries in the
GDT:

1. CS
2. DS

There is no GDT in place when the kernel boots!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Compiler Assumptions

A compiler assumes that SS = DS.

Therefore you should set DS = ES = FS = GS = SS for
each task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Setting up GDT

The location of the GDT is stored in a register called
GDTR.

x86 instructions
lgdt sets GDTR
sgdt reads GDTR

Setting up the GDT is the first thing your kernel should
do.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

EFLAGS

There is another register, EFLAGS, condition codes:

e.g., whether hardware interrupts are enabled, results of
last comparison, etc.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Loading a Task: ELF Format

ELF = Executable and Linkable Format:

Set up CS segment to point to code segment in ELF
file.

Allocate memory for task’s data segment.

Copy data segment from ELF file to newly allocated
memory.

Set up DS to point to the newly allocated memory.

Don’t forget about uninitialized data.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Context Switch

Context Switch

Task

Kernel
exitKernel (iretl)

return

return

syscall (int n)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

int n Behavior

int n:

g pushes ELFAGS, CS, and EIP values into
executing task’s stack

g looks up nth entry in interrupt descriptor table
(IDT)

g jumps to the address installed in IDT[n]

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

iretl Behavior

iretl:
g pops ELFAGS, CS, and EIP values from executing

task’s stack
g restores these popped values into the ELFAGS, CS,

and EIP registers.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

From Task1 to Kernel

1. Set up syscall parameters
2. int nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3. save task1’s state on task1’s stack: pushal saves all

8 GPRs
4. switch stacks to kernel’s stack
5. restore kernel state from kernel stack

g CS, EIP come from IDT
g DS — whatever you used for the kernel in GDT
g ESP — save as a global variable.hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6. return from exitKernel

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

From Kernel to Task2

1. save kernel’s state on kernel’s stack
2. switch stack to task2’s stack
3. restore task2’s state from task2’s stack: popal

restores all 8 GPRs
4. set up return value of int n
5. iretlhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6. return from syscall

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

First Time

The first time a task is loaded, put values on its stack so
that on exitKernel, they will be popped like for any
previously existing task.

Another example of faking it!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

