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Three Levels of Task Switching

1. High: Unbounded number of processors

2. Middle: Unbounded number of processes, one
CPU, and kernel routines

3. Low: Unbounded number of processes, one CPU,
and kernel task

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2



High Level View

Unbounded number of processors:

A system service is either

g instantaneous, like an ordinary instruction, or
g blocking, causing the executing processor to be

blocked.

Distinction between running and ready does not exist.
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High Level View, Cont’d

In the previous snapshot, both processors are running.

Next two snapshots shows one processor blocked
(asleep) and the other running.
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Middle Level View

Unbounded number of processes, one CPU, and kernel
routines

That is, a system service is done in a non-task kernel
that is made up of procedures that can be called by the
CPU.
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Middle Level View, Cont’d

Task switching is done as a side effect of making a
syscall, which does both the requested service and
switches to the task with the highest priority, usually
leaving the calling task blocked or ready.

It is possible that if the calling task were to be left
ready, it might be chosen as the task to switch to, but
only if it is the task with the highest priority.
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Middle Level View, Cont’d

Note that any task that is not running is left blocked or
ready in the middle of the syscall routine. So task
switching is done by changing the stack and base
pointers while keeping the instruction pointer pointing
into the syscall routine.
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“possibly leaving returnValue”?

Why does the instruction say “Handle syscall n,
possibly leaving returnValue in current stack;” instead
of just “leaving”?
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“possibly …”, Cont’d

If the syscall is an instantaneous kind, then handling
syscall n will definitely leave returnValue in current
stack.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15



“possibly …”, Cont’d

If, on the other hand, the syscall is a blocking kind,
then handling syscall n results in arranging that some
later execution of syscall will discover that the data
requested in this syscall are ready, that its value
should be deposited at the top of this stack, via a
pointer associated with the expected value, and that
this stack should be changed from blocked to ready.
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“possibly …”, Cont’d

The difficulty of keeping track of these pending
completions of syscalls through multiple invocations
of syscalls by one CPU, each with its own activation
record, is the reason that it is nice to make the kernel a
task that keeps its own data.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17



Context Switching Code

CPU & Registers

2π1π rrr2

saved state
’s’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr0’
Π

rrr1

returnValue1

syscall(n)

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore    ’s state

Save    ’s state into

   returnValue;
Return with
   from current stack;

   to tnxt’s stack;
Change current stack
Find next task tnxt;
   current stack;
   returnValue in
   possibly leaving
Handle syscall n,
   current stack;

n1

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18



Context Switching Code

CPU & Registers

2π1π rrr2

saved state
’s’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr2
Π

rrr1

returnValue1

syscall(n)

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore    ’s state

Save    ’s state into

   returnValue;
Return with
   from current stack;

   to tnxt’s stack;
Change current stack
Find next task tnxt;
   current stack;
   returnValue in
   possibly leaving
Handle syscall n,
   current stack;

n1

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19



syscall(n)

Context Switching Code

CPU & Registers

1π
saved state

’s

syscall n2

task2

code2

XXX2

inst2

rrr2
Π

rrr1

returnValue1

n1

   current stack;

stack2stack1

AR
syscall

Π

Π

Restore    ’s state

Save    ’s state into

   returnValue;
Return with
   from current stack;

   to tnxt’s stack;
Change current stack
Find next task tnxt;
   current stack;
   returnValue in
   possibly leaving
Handle syscall n,

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20



Low Level View

Unbounded number of processes, one CPU, and kernel
task

That is, a system service is done in a kernel task.
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Low Level View, Cont’d

I tried to decompose the context switching code into
the three pieces suggested by the explanation given of
the diagram:

Context Switch

Task

Kernel
exitKernel (iretl)

return

return

syscall (int n)

for the transition from task1 to the kernel and from the
kernel to task2, but it did not quite work.
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Low Level View, Cont’d

Note that what I show is only one possible
decomposition of the behavior.

Others will work, in particular e.g., making only one
procedure instead of three.
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Low Level View, Cont’d

First, a view of the context switching and the kernel
code.
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   storing it where
   ptr points;

exitKernel;

.  .  .

n1

syscalll(n) int exitKernel

[sc]:

Save    ’s state into
   current stack;
Change current stack
  to kernel’s stack

   as n & ptr;

code2

task2

syscall n2

’s
saved state
π1

stack1 stack2

instKI

XXXk’

kernelTask kernelStack

Jump;

kernelCode

.  .  .

Get value to return

   kernel’s stack;

Jump;

ΠRestore    ’s state
   from current stack;

Return;

.  .  .

.  .  .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

rrr2’

   stack;

Find next task tnxt;
Change current stack
   to tnxt’s stack;
Restore    ’s state
   from current stack;
iretl;

Π

Save    ’s state intoΠ

Π

Save n & ptr, pointer
   to returnValue slot;
int [sc];

Return;

   to top of current

Copy n & ptr from
   top of current AR

XXX2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
CPU & Registers

syscall
AR

inst2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37


