
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Three Levels of Task Switching

1. High: Unbounded number of processors

2. Middle: Unbounded number of processes, one
CPU, and kernel routines

3. Low: Unbounded number of processes, one CPU,
and kernel task

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

High Level View

Unbounded number of processors:

A system service is either

g instantaneous, like an ordinary instruction, or
g blocking, causing the executing processor to be

blocked.

Distinction between running and ready does not exist.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

inst1

XXX1

code1

π

stack1
task1

1

rrr1

syscall n1

inst2

XXX2

code2

π

stack2
task2

2

rrr2

syscall n2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

High Level View, Cont’d

In the previous snapshot, both processors are running.

Next two snapshots shows one processor blocked
(asleep) and the other running.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

inst1

XXX1

code1

π

stack1
task1

1

rrr1

syscall n1

inst2

XXX2

code2

π

stack2
task2

2

rrr2

syscall n2

ZZZZZ

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

inst1

XXX1

code1

π

stack1
task1

1

rrr1

syscall n1

inst2

XXX2’

code2

π

stack2
task2

2

rrr2’

syscall n2

ZZZZZ

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Middle Level View

Unbounded number of processes, one CPU, and kernel
routines

That is, a system service is done in a non-task kernel
that is made up of procedures that can be called by the
CPU.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Middle Level View, Cont’d

Task switching is done as a side effect of making a
syscall, which does both the requested service and
switches to the task with the highest priority, usually
leaving the calling task blocked or ready.

It is possible that if the calling task were to be left
ready, it might be chosen as the task to switch to, but
only if it is the task with the highest priority.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Middle Level View, Cont’d

Note that any task that is not running is left blocked or
ready in the middle of the syscall routine. So task
switching is done by changing the stack and base
pointers while keeping the instruction pointer pointing
into the syscall routine.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

 returnValue in
 possibly leaving
Handle syscall n,
 current stack;

syscall(n)

Context Switching Code

CPU & Registers

2πrrr2
’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

 current stack;

Ready

Running

170 130 95 75

stack2stack1

AR
syscall

saved state

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;

rrr1
Π

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

 current stack;

syscall(n)

Context Switching Code

CPU & Registers

2πrrr2
’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr1
Π

n1

syscall n1

Handle syscall n,

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;
 current stack;
 returnValue in
 possibly leaving

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Context Switching Code

CPU & Registers

2π1π rrr2

saved state
’s’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr0
Π

rrr1

returnValue1

syscall(n)

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;
 current stack;
 returnValue in
 possibly leaving
Handle syscall n,
 current stack;

n1

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

“possibly leaving returnValue”?

Why does the instruction say “Handle syscall n,
possibly leaving returnValue in current stack;” instead
of just “leaving”?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

“possibly …”, Cont’d

If the syscall is an instantaneous kind, then handling
syscall n will definitely leave returnValue in current
stack.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

“possibly …”, Cont’d

If, on the other hand, the syscall is a blocking kind,
then handling syscall n results in arranging that some
later execution of syscall will discover that the data
requested in this syscall are ready, that its value
should be deposited at the top of this stack, via a
pointer associated with the expected value, and that
this stack should be changed from blocked to ready.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

“possibly …”, Cont’d

The difficulty of keeping track of these pending
completions of syscalls through multiple invocations
of syscalls by one CPU, each with its own activation
record, is the reason that it is nice to make the kernel a
task that keeps its own data.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Context Switching Code

CPU & Registers

2π1π rrr2

saved state
’s’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr0’
Π

rrr1

returnValue1

syscall(n)

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;
 current stack;
 returnValue in
 possibly leaving
Handle syscall n,
 current stack;

n1

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Context Switching Code

CPU & Registers

2π1π rrr2

saved state
’s’s

returnValue2

n2

syscall n2

task2

code2

XXX2

inst2

rrr2
Π

rrr1

returnValue1

syscall(n)

stack2stack1

AR
syscall

AR
syscall

saved state

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;
 current stack;
 returnValue in
 possibly leaving
Handle syscall n,
 current stack;

n1

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

syscall(n)

Context Switching Code

CPU & Registers

1π
saved state

’s

syscall n2

task2

code2

XXX2

inst2

rrr2
Π

rrr1

returnValue1

n1

 current stack;

stack2stack1

AR
syscall

Π

Π

Restore ’s state

Save ’s state into

 returnValue;
Return with
 from current stack;

 to tnxt’s stack;
Change current stack
Find next task tnxt;
 current stack;
 returnValue in
 possibly leaving
Handle syscall n,

syscall n1

task1

code1

XXX1

inst1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Low Level View

Unbounded number of processes, one CPU, and kernel
task

That is, a system service is done in a kernel task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Low Level View, Cont’d

I tried to decompose the context switching code into
the three pieces suggested by the explanation given of
the diagram:

Context Switch

Task

Kernel
exitKernel (iretl)

return

return

syscall (int n)

for the transition from task1 to the kernel and from the
kernel to task2, but it did not quite work.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

Low Level View, Cont’d

Note that what I show is only one possible
decomposition of the behavior.

Others will work, in particular e.g., making only one
procedure instead of three.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

Low Level View, Cont’d

First, a view of the context switching and the kernel
code.

Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

 kernel’s stack;

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n, to kernel’s stack

Change current stack
 current stack;
Save ’s state into

[sc]:

exitKernelintsyscalll(n)

. . .

exitKernel;

 ptr points;
 storing it where
 returnValue and
 possibly getting

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

κ’s

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

Running

Ready

saved state

returnValue2

’s
rrr2 π2

saved state
syscall

AR

stack1 stack2

rrrKexitKernel
AR

instKI

XXXk

kernelTask kernelStack

syscalll(n)

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

Π

int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

n2

inst1

XXX1

code1

task1

syscall n1

Π
rrr1

CPU & Registers

inst2

XXX2

code2

task2

syscall n2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

XXXk

kernelTask kernelStack

saved state
κ’s

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

instKI

XXX2

code2

task2

syscall n2

n2

returnValue2

’s
rrr2 π2

saved state
syscall

AR

stack1 stack2

rrrKexitKernel
AR

. . .

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

Π

syscalll(n) int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

inst2inst1

XXX1

code1

task1

syscall n1

n1

Π
rrr1

CPU & Registers

syscall
AR

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrr1

CPU & Registers

syscall
AR

inst2

XXX2

code2

task2

syscall n2

kernelTask kernelStack

saved state
κ’s

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

XXXk

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

rrrKexitKernel
AR

instKI

Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state

 to tnxt’s stack;

syscalll(n) int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack

 from current stack;
Return;

. . .

. . .

Context
Switching Code

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

AR

instKI

XXXk

kernelTask kernelStack

saved state
κ’s

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel

code2

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

rrrk

exitKernel;

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

n1

n1

Π

. . .

syscalll(n) int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

XXX2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrr1

CPU & Registers

syscall
AR

inst2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk

CPU & Registers

syscall
AR

inst2

XXX2

code2

task2

syscall n2

kernelTask kernelStack

saved state
κ’s

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

n1

XXXk

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

rrrkexitKernel
AR

instKI

Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

 to tnxt’s stack;

syscalll(n) int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack

Return;

. . .

. . .

Context
Switching Code

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

XXXk

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

n1

instKI

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

syscalll(n)

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

Π

int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

code2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk

CPU & Registers

syscall
AR

inst2

XXX2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

XXXk’

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n)

instKI

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

int

 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

Save n & ptr, pointer

exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

code2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk’

CPU & Registers

syscall
AR

inst2

XXX2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

instKI

XXXk’

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n)

stack2

XXX2

code2

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1

int

int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

 to returnValue slot;

exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer

inst2inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk’’

CPU & Registers

syscall
AR

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n) int exitKernel

XXXk’

code2

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

instKI

[sc]:

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

 to top of current

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

XXX2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk’’

CPU & Registers

syscall
AR

inst2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n) int exitKernel

XXXk’

code2

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

instKI

[sc]:

Copy n & ptr from
 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

 to top of current

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

XXX2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
rrrk’’’

CPU & Registers

syscall
AR

inst2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n) int exitKernel

[sc]:

kernelTask

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

instKI

XXXk’

Save ’s state into

 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

rrr2

Copy n & ptr from

 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

code2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
CPU & Registers

syscall
AR

inst2

XXX2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

kernelStack

Jump;

kernelCode

. . .

Get value to return
 as n & ptr;
Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n) int exitKernel

[sc]:

kernelTask

task2

syscall n2

n2

returnValue2

’s ’s
saved state

rrr2π1 π2
saved state

syscall
AR

stack1 stack2

instKI

XXXk’

Save ’s state into

 top of current AR

 stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

rrr2’

Copy n & ptr from

 current stack;
Change current stack
 to kernel’s stack

 kernel’s stack;
Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

code2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
CPU & Registers

syscall
AR

inst2

XXX2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

Handle syscall n,
 possibly getting
 returnValue and
 storing it where
 ptr points;

exitKernel;

. . .

n1

syscalll(n) int exitKernel

[sc]:

Save ’s state into
 current stack;
Change current stack
 to kernel’s stack

 as n & ptr;

code2

task2

syscall n2

’s
saved state
π1

stack1 stack2

instKI

XXXk’

kernelTask kernelStack

Jump;

kernelCode

. . .

Get value to return

 kernel’s stack;

Jump;

ΠRestore ’s state
 from current stack;

Return;

. . .

. . .

Context
Switching Code

returnValue1

exitKernel
AR

rrrk’’

saved state
κ’s

rrr2’

 stack;

Find next task tnxt;
Change current stack
 to tnxt’s stack;
Restore ’s state
 from current stack;
iretl;

Π

Save ’s state intoΠ

Π

Save n & ptr, pointer
 to returnValue slot;
int [sc];

Return;

 to top of current

Copy n & ptr from
 top of current AR

XXX2

inst1

XXX1

code1

task1

syscall n1

n1

rrr1

Π
CPU & Registers

syscall
AR

inst2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

