CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Real-Time Considerations
Hardware interrupts are turned off in the kernel.

O, the kernel will not be able to respond to any stimuli
O, the kernel must limit the time it spends responding

to a syscall, scheduling, and context switching in order
to remain responsive to stimuli.

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

Real-Time Considerations, Cont'd
O, the amount of time spent in the kernel responding to
asyscall, scheduling, and context switching must be
constant (0(1)) and small.

Why must hardware interrupts be turned off in the
kernel?

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Real-Time Considerations, Cont'd
In order to help ensure that the amount of time spent in
the kernel responding to a syscall, scheduling, and
context switching be constant (0(1)) and small.

So thisisan if-and-only-if situation! ©

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4




Problem with Task Creation
Task creation

e requires copying task’s DS to newly-allocated
memory, and [

e requiresO(n) time, where nisthe size of DS.

How can wefix this problem?

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Solution to Task Creation Problem
Arrange for atask to copy its own DS.

Then the O(n) copying time occurs outside of the
kernel.

How?

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Implementation of Solution
The provided crt0.S for tasks already doesiit.

The code needs to push:

the task’s DS,

the kernel’s DS,

the location of data segment in physical memory,
the location to which to copy the data segment, and
the size of bss,

in addition to the state necessary in order to be able to
switch into the task.

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Task Management
e Task Descriptor

e Scheduling

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8




Task Descriptor

A task descriptor is adata structure (i.e., the tin the
diagrams) in which the kernel maintainsinformation
about atask.

struct taskDescriptor{
— process state (Active, Ready, Blocked, Dead),
— priority,
- SS, ESP,
- links, etc.
} descriptorTable[NUMDESCRIPTORS]

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Task Descriptor, Cont'd

Create a descriptor for each new processasit is
created.

Task identifier (TID):

e unique ID for each task
e primary purpose of aTID isto locate its task

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Task Descriptor, Cont'd
Simple implementations:
e A TID isanindex into the descriptorTable.

e ATID isthe address of itstask’s descriptor.

[ 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Task Descriptor, Cont'd

M ore sophisticated:

32 - n bits n bits

Use upper bits as a generation counter to prevent TID
duplication if atask is given the same descriptor of a
now-dead task.

Thentid — descriptor
is descriptorTable[tid & mask]
where mask is def’d asastring of n 1s.

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12




Scheduling

In scheduling, the ideais that at any time, the most
time-critical task should be active.

Y our kernel must implement scheduling based on
fixed priorities.

Y ou must follow this scheme:
e All ready tasks with the highest priority run first.

e All ready task at any one priority are scheduled
round robin.

0 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Scheduling, Cont'd

A gueue for each priority, 0=high through 8=low:

[ ]

IEEm—.

For these nodes,
5 use the task
6 descriptors

:)}FW ‘ themselves.

0 2007 Daniel M. Berry

Real-Time Programming: Trains

Pg. 14

Scheduling, Cont'd

Reschedule(){

— put the current Active task at the end of the queue
for its priority;

— select thetask that is at the front of the highest
priority queue;

}

[ 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15




