
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Real-Time Considerations

Hardware interrupts are turned off in the kernel.

∴, the kernel will not be able to respond to any stimuli

∴, the kernel must limit the time it spends responding
to a syscall, scheduling, and context switching in order
to remain responsive to stimuli.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

Real-Time Considerations, Cont’d

∴, the amount of time spent in the kernel responding to
a syscall, scheduling, and context switching must be
constant (O(1)) and small.

Why must hardware interrupts be turned off in the
kernel?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Real-Time Considerations, Cont’d

In order to help ensure that the amount of time spent in
the kernel responding to a syscall, scheduling, and
context switching be constant (O(1)) and small.

So this is an if-and-only-if situation!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

Problem with Task Creation

Task creation

g requires copying task’s DS to newly-allocated
memory, and ∴

g requires O(n) time, where n is the size of DS.

How can we fix this problem?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Solution to Task Creation Problem

Arrange for a task to copy its own DS.

Then the O(n) copying time occurs outside of the
kernel.

How?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Implementation of Solution

The provided crt0.S for tasks already does it.

The code needs to push:

g the task’s DS,
g the kernel’s DS,
g the location of data segment in physical memory,
g the location to which to copy the data segment, and
g the size of bss,

in addition to the state necessary in order to be able to
switch into the task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Task Management

g Task Descriptor

g Scheduling

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Task Descriptor

A task descriptor is a data structure (i.e., the π in the
diagrams) in which the kernel maintains information
about a task.

struct taskDescriptor{
− process state (Active, Ready, Blocked, Dead),
− priority,
− SS, ESP,
− links, etc.

} descriptorTable[NUMDESCRIPTORS]

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Task Descriptor, Cont’d

Create a descriptor for each new process as it is
created.

Task identifier (TID):

g unique ID for each task
g primary purpose of a TID is to locate its task

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Task Descriptor, Cont’d

Simple implementations:

g A TID is an index into the descriptorTable.

g A TID is the address of its task’s descriptor.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Task Descriptor, Cont’d

More sophisticated:

32 - n bits n bits

Use upper bits as a generation counter to prevent TID
duplication if a task is given the same descriptor of a
now-dead task.

Then tid → descriptor
is descriptorTable[tid & mask]
where mask is def’d as a string of n 1s.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Scheduling

In scheduling, the idea is that at any time, the most
time-critical task should be active.

Your kernel must implement scheduling based on
fixed priorities.

You must follow this scheme:

g All ready tasks with the highest priority run first.
g All ready task at any one priority are scheduled

round robin.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Scheduling, Cont’d

A queue for each priority, 0=high through 8=low:

0

1

2

3

4

5

6

7

For these nodes,
use the task
descriptors
themselves.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Scheduling, Cont’d

Reschedule(){
− put the current Active task at the end of the queue

for its priority;
− select the task that is at the front of the highest

priority queue;
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

