
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Inter-Process Communication (IPC)

g data transfer from task to task, i.e., communication
g inter-task control flow, i.e., synchronization

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

IPC Mechanisms

g semaphores, i.e., p (request) and v (release)
g monitors, i.e., a class with a semaphore ensuring

that only one process at a time is inside it.
g shared memory
g sockets
g remote procedure call (RPC)
g broadcast, multicast
g asynchronous and synchronous message passing

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Your Kernel

Your kernel will use synchronous, i.e., blocking,
send–receive–reply message passing with variable-
length messages, and will thus have primitives:

g Send
g Receive
g Reply

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

Send

send: (tid × msg) → replyMsg
send the message to the specified task;
wait for a reply message

int Send(int tid, char *msg, int msgLen,
char *replyBuf, int replyBufLen)

if returned value ≥ 0, then it is the actual reply length
if returned value < 0, then it is indicating an error
the replyBufLen is the maximum reply length

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Receive

receive: () → (tid × msg)
wait for a task to send a message

int Receive(int *tid, char *msgBuf, int msgBufLen)
if returned value ≥ 0, then it is the actual message length
if returned value < 0, then it is indicating an error
the *tid is the identify of the sending task
the msgBufLen is the maximum message length

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Reply

reply: (tid × replyMsg) → ()
reply to a previously received message

int Reply(int tid, char *replyMsg, int replyMsgLen)
if returned value ≥ 0, then it is the actual reply length
if returned value < 0, then it is indicating an error
the replyMsgLen is the maximum reply length

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Blocking

Send will block.

Receive may block.

Reply never blocks.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Synchronous vs. Asynchronous
Communication

We discuss the advantages of each.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Advantages of Asynchronous
Communication

g Sender can do other work while waiting for the sent
message to be received and replied to. However, is
this really an advantage?

g We can set up cyclic message-passing patterns that
would otherwise deadlock, e.g., a task sending a
message to itself.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Advantages of Synchronous
Communication

g It provides built-in synchronization that can be
used to achieve any synchronization

g It is much easier to reason about synchronous
communication.

g Synchronous communication can mimic
asynchronous communication with the use of
helper processes, that do the other work while the
sending process is waiting for the sent message to
be received and replied to.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Example

Example of Blocking Send–Receive–Reply Bounded
Buffer

producer consumer

We look at a high-level view first and then the details.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

High-Level Data Flow

Producer Consumer

send data

acknowledge

Producer sends data and the consumer acknowledges
receipt of data.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Process Structure Diagram

ReplyReply

SendSend

Buffer
Bounded

ConsumerProducer

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Implementation of send data

High-level send data is implemented by

(1) a Send with data from producer to buffer task
and then

(2) a Reply with the same data from buffer task to
consumer, where (2) is done in response to (1’)

(1’) a Send with null data from consumer to buffer
task, indicating that the consumer is ready to
receive data, and then

(2’) a Reply with the same null data from buffer
task to producer.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Superposition

send data

acknowledgeReply Reply

SendSend

Buffer
Bounded

ConsumerProducer

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

Producer

Producer(){
while(1){

data = produceItem();
Send(bufferTask,data,NULL); /* send data =

Send data; receive NULL */
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Consumer

Consumer(){
while(1){

Send(bufferTask,NULL,data); /* acknowledge =
Send NULL; receive data */

consumeItem(data);
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

BoundedBuffer

BoundedBuffer(){
while (1){

(tid,data) = Receive();
if (tid==consumer){

Producing
} else if (tid==producer){

Consuming
}

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

BoundedBuffer

BoundedBuffer(){
while (1){

(tid,data) = Receive();
if (tid==consumer){

Producing
} else if (tid==producer){

Consuming
} /* ignore other processes */

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Producing
if (queueEmpty()){

consumerWaiting = TRUE;
} else {

data = queueRemove();
Reply(consumer,data);
if (producerWaiting){

Reply(producer,NULL);
producerWaiting = FALSE;

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Producing
if (queueEmpty()){ /*here if cons sent msg to Q that it wants data */

consumerWaiting = TRUE;
} else { /* Q is not empty */

data = queueRemove();
Reply(consumer,data);
if (producerWaiting){ /* if Q was full */

Reply(producer,NULL); /* tell prod that Q is no longer full */
producerWaiting = FALSE;

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

Consuming
if (consumerWaiting){

Reply(consumer,data);
Reply(producer,NULL);
consumerWaiting = FALSE;

} else {
queueAdd(data);
if (queueFull(){

producerWaiting = TRUE;
} else {

Reply(producer,NULL);
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

Consuming
if (consumerWaiting){ /*here if prod sent msg to Q that it sent data */

Reply(consumer,data); /*tell cons that it need not wait any more */
Reply(producer,NULL); /*tell prod that Q is not full */
consumerWaiting = FALSE;

} else { /* data arrived before request */
queueAdd(data);
if (queueFull(){

producerWaiting = TRUE;
} else {

Reply(producer,NULL); /* tell prod that Q is not full */
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

Size of BoundedBuffer

By virtue of the code, what is the maximum number of
data items that can be stored in the BoundedBuffer at
any time?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

Generalization

n producers and m consumers

P3

P2

P1

C2

C1

C3

nP Cm

.

.

.

.

.

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

Example

output
terminal

display
track

clock

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

SRR Implementation

g Task States
g Transfer of Control
g State Transitions
g Implementation Suggestion
g Implementation Primitives for Kernel 2

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

Task States

g Sender
f SEND_BLOCKED — send to task; msg not

received
f REPLY_BLOCKED — send to task; msg

received; no reply yet
g Receiver

f RECEIVE_BLOCKED — receive issued; no
send available

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

Transfer of Control

Send()

Reply()

Receive()

READY

BLOCKED
RECEIVE_

READY

READY

READY

ReceiverSender

Receive Before Send

REPLY_
BLOCKED

msg xfer

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

State Transitions

c = receiver issues Reply()

b = sender issues Send()

a = receiver issues Receive()

Receiver

Sender

c

BLOCKED
RECEIVE_

READY

b

a

c

b

READY BLOCKED
REPLY_

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

Transfer of Control

Receive()

msg xfer

msg xfer Reply()BLOCKED
REPLY_

BLOCKED
SEND_

Send()

READY READY

READY

ReceiverSender

Send Before Receive

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

State Transitions

Receiver
c

a

a, b, c

READY

SEND_
BLOCKED

BLOCKED
REPLY_

Sender
b

READY

c = receiver issues Reply()

b = sender issues Send()

a = receiver issues Receive()

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Implementation Suggestion

Each task descriptor should have its own queue of
SEND_BLOCKED tasks.

tail

head
next next

Send Queue

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

Suggestion, Cont’d

The send queue of task t is a queue of tasks each of
whom has issued a Send() to t but the message has not
been transmitted because t has not issued a
corresponding Receive().

No queue is needed for RECEIVE_BLOCKED or
REPLY_BLOCKED tasks.

Why?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

Message Transfer

Message transfer

g is directly from one task’s address space to
another’s and

g is not buffered in the kernel.

Who should carry out the actual transfer?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

Who Does the Transfer?

Should the kernel do it?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

The Kernel?

The cost is linear in the size of the message.

So the kernel should not do it.

So it must be some other party, a third party.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 38

Third Party?

The third party is either the sender or the receiver.

Which one?

How does the third party, whatever it is, get the
information needed to do the transfer?

What about the priorities of the sender, the receiver,
and of other tasks, if any?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 39

Sender?

If the sender copies during the call of Send:

Suppose the receiver has a high priority and the sender
has a low priority and we have a Receive before the
corresponding Send.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 40

As It Should Be

Priority

Receive

Send

High
Receiver

Low
Sender

Time

copy
Sender does

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 41

Sender?

However, there might be at least one other task, called
the third task.

Suppose this third task has a middle level priority:

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 42

As It Can Be

Time

Sender
Low

Receiver
High

Receive

Priority

Send

Third Process
Medium

becomes
unblocked

preempted
by third
process

Sender does
copy

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 43

Anomaly

The third process has higher priority than the sender
and preempts the sender.

∴, the receiver, though of higher priority than the third
task, never gets unblocked and never gets to run. So it
is effectively pre-empted even though it is not running.

If the receiver were doing the transfer, the receiver
would not be preempted.

So the receiver should do the transfer of a Send.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 44

What If?

Suppose in the above situation, the sender is of high
priority and the receiver is of low priority.

Is it correct that the receiver is doing the transfer of a
Send?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 45

Transfer During Reply

If the sender (of Send) does the transfer during a
Reply:

g The receiver (of Send) is not blocked.
g ∴, receiver could overwrite previously written data

before the sender is finished transfering it.

If the receiver transfers on Reply, then the sender is
blocked, so that no problems can arise from the
sender’s acting before the transfer is complete.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 46

Send()

Reply()

Receive()

READY

BLOCKED
RECEIVE_

READY

READY

READY

ReceiverSender

Receive Before Send

REPLY_
BLOCKED

msg xfer

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 47

Receive()

msg xfer

msg xfer Reply()BLOCKED
REPLY_

BLOCKED
SEND_

Send()

READY READY

READY

ReceiverSender

Send Before Receive

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 48

Information Primitives
for Kernel 2

g MyParentPid()
g MyPriority()
g ValidPid(int pid)

as specified in the kernel specification.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 49

Optional primitive

Destroy(int pid)

which kills the task named pid and reclaims the
resources associated with the killed task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 50

Destroy Semantics

g Tasks that are SEND_BLOCKED or
REPLY_BLOCKED on the task named by pid
must be made READY; and an error code is
returned

g The task named by pid must be removed from the
ready queue.

g The storage associated with the task named by pid
must be reclaimed.

g The pid itself must not be reused.
g The task descriptor named by the pid must be

reusable.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 51

Destroy Semantics, Cont’d

and last, but not least:

g You must figure out a reasonable way to deal with
the MyParentPid()s of the children of the task
named by the pid.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 52

OS Services

We talk about OS services outside the kernel, and these
include device drivers.

Why do they include device drivers?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 53

Name Server

The name server provides the mapping from names to
PIDs, and is used to build a name lookup service.

Required Primitives:

g RegisterAs(char *name) — register the PID of
the executing process as having the given name.

g tid WhoIs(char *name) — get the PID of the
process having the given name.

Optional suggested primitive: tid WaitFor(char
*name) — blocking version of WhoIs.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 54

Name Server, Cont’d

A task may register itself with more than one name.

No two tasks can register themselves with the same
name.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 55

Finding the Name Server

Either:

g provide
whoIsNameServer()
and
registerAsNameServer()
or

g Let the initial task be the name server.

Ergo, in any case the name server is a task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 56

NameServer

NameServer(){
RegisterAsNameServer;
while (1){

(tid,msg) ← Receive();
if (msg.type == WHOIS) {

who = lookup (msg.name);
Reply (tid,who);

} else if (msg.type == REGISTERAS) {
register (tid,msg.name);
Reply (tid,NULL);

} } }

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 57

WhoIs

int whoIs(char *name){
— send a msg to the NameServer

}

Code of RegisterAs is left as an exercise for the student

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 58

