
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Documentation Requirements

For the Kernel Assignment:
g Description of all major components of the system,

e.g. memory management, task management,
context switching. Context switching should be
described in detail.

g Description of kernel data structures and
algorithms, e.g., task descriptors, scheduler, etc.

g Description of syscall implementation, including
parameter passing.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

Doc. Reqs., Cont’d

g Explain why your implementation meets real-time
requirements, by giving the complexity of each
kernel operation.

g Description of test cases, including that they cover
what should be tested.

g User’s manual

g Tour of source code.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Hardware Interrupts

7
6
5
4
3
2
1
0

0

USART1

USART0

ICU1
8259

RTC
PIT

ICU0
8259

CPU

INT

BUS

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

Acronyms

USART = Universal Synchronous Asynchronous
Receiver/Transmitter

ICU = Interrupt Control Unit

RTC = Real Time Clock

PIT = Programmable Interval Timer

It bothers me that RTC and PIT are different, because
of the chances for drift.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

How A Device Speaks to CPU

1. External event occurs.

2. Device asserting interrupt asserts its interrupt line.

3. Interrupts are priority ranked by the ICU, which
interrupts the CPU.

4. CPU reads IRQ (interrupt request) level from ICU
data bus.

5. CPU begins interrupt processing.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Interrupt Numbers

0–31 Processor Internal (GPF, division by zero,
etc.)

31–39 First ICU (IRQ0–IRQ7)

40–47 Second ICU (IRQ8–IRQ15)

48–255 Software Interrupts; ∴, for int n, be sure
that n≥48!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

To Make Interrupts Happen

g Enable Interrupts by setting IF (Interrupt Enable
Flag), which is stored in EFLAGS register.

g Instructions are:
STI — set IF (enable)
CLI — clear IF (disable)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Happening, Cont’d

g Interrupts are:
f enabled in non-kernel tasks,
f disabled in the kernel, and
f enabled at boot up.

g Unmask interrupts of interest in ICUs.

g Configure each device to generate interrupts.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

CPU’s response to an Interrupt

1. Push EFLAGS, including current IF.

2. Clear IF and TF (trap flag, to enable single-
stepping; in single-step mode, each instruction is an
interrupt).

3. Push CS

4. Push EIP

5. Load CS, EIP from IDT.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Interrupt Service Routine

1. Record interrupt number.

2. Switch into kernel.

3. Send non-specific EOI to ICUs, otherwise they
won’t generate any more interrupts:

outb(IO_ICU1,0x20)

outb(IO_ICU2,0x20)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Event Abstraction

An event abstraction is the representation of an
external event at the task level.

g More than one event can be associated with a
physical device, e.g., as for serial input and output.

g int AwaitEvent(int EventNumber) — block and
wait for an instance of the specified event to occur.

g Event may occur before int AwaitEvent is issued;
therefore buffer at least one instance of each kind of
event.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Event Abstraction, Cont’d

g Associate an event number with each hardware
event.

g Can have also software events.

g int SignalEvent(int EventNumber) — signals an
instance of the specified event, unblocking a task
that is awaiting that event number.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

A Possible Application of Events

Block a task until the fulfillment of a condition, but
allow more than one task to fulfill the condition and
then unblock the the waiting task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Server Implementation

R
ec

ei
ve

()

A
w

ai
tE

ve
nt

()

N
Client

1
Client

ServerHW

.

.

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Server Implementation, Cont’d

g On Receive(), server is RECEIVE_BLOCKED
g On AwaitEvent(), server is EVENT_BLOCKED

Cannot service clients while EVENT_BLOCKED.

Cannot respond to events while
RECEIVE_BLOCKED.

∴, one type of event starves the other.

How can we prevent this starvation?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

Event Notifier Task

Notifier

Event
External

N
Client

1
Client

Server

.

.

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Notifier

Notifier(){
while(1){

AwaitEvent(eventNumber); /* transform event to */
Send(Server,eventNumber,NULL); /* a message */

}
}

Then server needs to call only Receive(), and not
AwaitEvent().

Notifier and clients are then serviced in the order in
which they send.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Server
Server(){

Initialize(); CreateNotifier(); RegisterAs(…);
while(1){

(tid,msg) ← Receive();
if (tid==Notifier){

Reply(Notifier,NULL);
serviceDevice();

} else {
serviceRequest();

}
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

Implementation

New state: EVENT_BLOCKED

Event table:

g indexed by event numbers

g buffers event information

g records waiting tasks if any

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Clock Server

Delay(int t):

g Blocks caller for at least t ticks.

g A tick is 1/20 of a second.

g Implemented by sending a message to clock server.

g Clock server replies after at least t ticks.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Delay

Delay(int t){
int clock = WhoIs("clockServer");
Send(clock,(char *)&t,sizeof(t),NULL,0);

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

Clock Server

Notifier
Server
Clock

Event
Clock

N
Client

1
Client

.

.

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

A Problem

What if ALL tasks, other than the clock server and
notifier, call Delay()?

What happens between now and the next clock tick?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

What Happens if All Delay?

g Kernel has no tasks to run.

g Kernel cannot wait for a hardware event to wake up
a notifier,

because interrupts are disabled!
∴ There needs to be a running task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

Always Running Task

Create an idle task that never blocks, and runs at the
lowest priority!

IdleTask(){
while(1);

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

Clock Server

ClockServer(){
time = 0;
InitializePIT();
notifier = CreateClockNotifier();
while(1){

Loop Body
}

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

Loop Body

(pid,request) ← Receive();
if(pid == NOTIFIER){

time++;
Reply(pid,NULL);
while(nextWaitingTime() <= time){

pid = dequeueWaitingTask();
Reply(pid,NULL);

}
} else { /* assuming that only request is Delay */

enqueueWaitingTask(pid,time + timeRequest);
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

Loop Body, Cont’d

This body assumes that there is only one kind of
request, i.e., Delay.

If there are others, the else part will have to have a
case to separate out which request it is.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

Clock Notifier

ClockNotifier(){
while(1){

AwaitEvent(PIT_EVENT);
Send(MyParentPid(),NULL,NULL);

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

Programmable Interval Timer

The programmable interval timer (PIT), the Intel 8253:

g Interrupt number 32

g Counter 0

g Mode 2

For interrupt number and counter, see Diagram on Page
4.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

Mode ?

Mode 1 = HW Interrupt or Exception in Virtual 8086
Mode

Mode 2 = Maskable HW Interrupt in Virtual 8086
Mode

Mode 3 = SW Interrupt in Virtual 8086 Mode

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

More Clock Primitives

int getTime() — returns the current tick count

DelayUntil(int t) — delay until a specified time t; the
executing process is blocked to be awakened when tick
count ≥ t.

These are optional in your kernel.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Delay vs DelayUntil

while (1){
Delay(x);
doSomething();

}

should have the same effect as

t = getTime();
while (1){

t+=x; DelayUntil(t);
doSomething();

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

Delay vs DelayUntil, Cont’d

but they don’t.

What’s the REAL Difference?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

One Real Difference

The doSomething takes time.

∴, the period in the first case is x + time
(doSomething),

and the period in the second case is x.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

Another Real Difference

Amount of delay ≥ x, say x+ε.

These εs accumulate under successive Delays, but …

These εs do not accumulate under successive
DelayUntils.

∴, DelayUntil enforces stricter periodicity.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

Scheduling Options

time-slicing vs. run-to-completion
fair efficient

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 38

When to Reschedule

Rescheduling when a task calls the kernel!

Pass() must reschedule!

Should interrupt currently executing task periodically,
e.g., every k ticks, to force rescheduling for round-
robin purposes?

Preemption required when a task of a priority higher
than that of the running task becomes READY due to
an external event!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 39

Serial Chip

Serial Chip, PC16550D, Universal Asynchronous
Receiver/Transmitter (UART) (See Documentation
from byterunner)

Registers:

Transmit Holding Register — for reading from the
serial port

Receiver Buffer Register — for writing to the serial
port

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 40

Registers, Cont’d

Interrupt Enable Register — for enabling and
disabling interrupts

Interrupt Types:
g Received Data Available
g Transmit Holding Register Empty
g Receiver Line Status — for error conditions
g Modem Status — not needed

Interrupt Identification Register — to determine
what kind of interrupt fired

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 41

Registers, Cont’d

Line Control Register — to initialize the chip with
parity, stop bits, etc.

Line Status Register — diagnostics, e.g., ready,
error conditions, etc.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 42

Primitives for Kernel Part III

ClockServer
required

Delay(int t)
optional

int GetTime()
DelayUntil(int t)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 43

Kernel Part III, Cont’d

SerialServer
required

byte=GetPort(port)
Put(byte,port)

optional
write(port,buffer,length) — atomically
read(port,buffer,length)
readLine(port,buffer,length)

See Complete I/O Port List.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 44

Serial Server

Reader
M

.

.

Notifier
1

.

Notifier
K

.

.

.

Writer
1

Writer
N

Serial
Server UART

One notifier per port

1

.

.

.

Reader

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 45

Serial Server, Cont’d

Like the producer–consumer problem, but with
multiple producers and multiple consumers.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 46

What If?

Writer
3

Writer
2

Writer
100000000

.

.

.

.

.

.

Notifier

Serial
events

Server

Writer
1

Serial

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 47

Too Many Readers

Too many readers or writers or both could starve the
notifier, …

and the notifier could miss interrupts.

How can we ensure that the notifier does not miss
interrupts and answers them on time?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 48

Guard Process

1

Reader
M

.

.

.

Writer
1

Writer
N

Notifier

Serial
events

Serial
Server

Reader
Guard

Writer
Guard

Reader

.

.

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 49

Guard

Guard(){
serialServer = MyParentPid();
while(1){

(tid,msg) ← Receive();
replyMsg ← Send(serialServer,msg);
Reply(tid,replyMsg);

}
}

Should there be a delay guard for the clock server?

