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Assigment 1 Process Structure
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Process

This graph shows only Sends.

Replys, in the opposite directions are implied; so it is
not necessary to show them.

Also, later, a potential deadlock detection algorithm
depends on having only Send arcs.
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Steady State

The diagram represents the steady state after all
initialization is done.

∴, communication during initialization, e.g. with the
name server, is not included.
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You Already Know

You already know about:

g the various events,
g notifiers,
g serial servers,
g guards, and
g the clock server.

We talk about what is new.
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Train Server

The train server

g receives high-level train commands from tasks,

g issues commands to track, and

g replies track information.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

User Commands

The user commands process

g prompts user and

g issues commands.
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Track Status

The track status process

g requests sensor updates from train server,

g gets current time, and

g displays updates on the WYSE.
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Time Display

The time display process

g does GetTime() and

g displays time on the WYSE.
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Priority Inversion

Priority inversion (PI) occurs when a task is forced to
wait on another task of lower priority.

E.g.,

Task t 1 with priority p 1, ready

Task t 2 with priority p 2, ready

Task t 3 with priority p 3, ready

p 1 < p 2 < p 3. ∴ t 3 is running.
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Priority Inversion, Cont’d

Two different scenarios.
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Scenario 1

t 3 sends to t 1

→ t 3 waits while t 2 runs
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Scenario 1, Cont’d
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Scenario 2

t 3 is blocked.

t 2 sends to t 3 and blocks.

t 1 sends to t 3 and blocks.

t 3 gets unblocked.

→ one possibility is that t 2 waits while t 3 services
t 1’s request.
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Scenario 2, Cont’d
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Scenarios Only Possible

Each of these scenarios is possible, not guaranteed.

But the possibility is enough to cause problems if the
possibility becomes a reality.
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Duration of an Inversion

The duration of a priority inversion can be unbounded
or uncontrolled.
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Real-Life Example of PI

In the Mars Pathfinder, tasks communicate via an
information bus.

g The bus management task, that moves data through
the bus, is of high priority.
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Real-Life Example of PI, Cont’d

g The meterological data gathering task runs
infrequently and is of low priority. This task uses
the bus directly, by
f acquiring a semaphore, writing to the bus, and

releasing the semaphore, the same semaphore
the bus management task uses to access the bus,

f so as not to interfere with the information bus
management task.

g The communications task is of medium priority.

These priority assignments make sense.
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Problematic Scenario

A HW interrupt causes the bus management task to
wake up.

However, the meterological data gathering task holds
the semaphore.

∴, the bus manager must wait until data gathering task
gives up the semaphore.

Priority inversion!
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Problematic Scenario, Cont’d

This priority inversion is normally not a problem.

However, if the medium priority task gets scheduled
before the semaphore is released, then the bus
management task cannot run.

The implemented solution: Eventually a watchdog task
detects that the bus manager has not run for some time,
concludes that there is a problem, and resets the
system.
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Problematic Scenario, Cont’d

For the Mars Pathfinder, this reset is OK and does not
cause any real problem because there is no state to
remember; it always sends just the current data.

For your trains software, there is state, namely the
setting of all switches, the location of all trains, etc.

So a reset is not an acceptable solution to priority
inversion.
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How to Fix Priority Inversion

Use priority inheritance!

That is, cause a task t to temporarily inherit a higher
priority from the higher priority task that depends on t.
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Solving Scenario 1

If tasks t 1 , . . . ,t n are SEND_BLOCKED or
REPLY_BLOCKED on t 0,

actualPriority(t 0) =
0≤i≤n
MAX (assignedPriority (t i))

I.e., promote t 0 to have the highest of the priorities of
the tasks waiting on t 0. Then a medium priority task
cannot preempt t 0.
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Solving Scenario 1, Cont’d
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Solving problem 2

The next message received is from the highest priority
SEND_BLOCKED task.
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Solving Scenario 2, Cont’d
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Implementation

Implementation of these solutions requires:

g order tasks by priority on any Send queue

OR

g multiple queues per task, one for each priority

Also for Solution 1, also REPLY_BLOCKED tasks
must be tracked.
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Deadlock!

Note that priority inheritance prevents priority
inversion, but not deadlock

Deadlock is a cyclic resource dependency.

Among tasks t 0 , ... , t n − 1, each task t i holds a resource
that is needed by t ( i + 1) mod n to proceed.

∴, None of t 0 , ... , t n − 1 can ever run.
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Cyclic Resource Dependency

A cyclic resource dependency is called also “a cyclic
send pattern”.

3t

2t1t

0t

If each T i Sends before any T i Receives, the tasks
deadlock.
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Deadlock, Cont’d

A cycle in the steady-state process diagram indicates a
potential deadlock.

∴, in your applications, your steady-state diagram must
be an acyclic graph, as is the graph at the beginning of
this section of slides.

If the process diagram is acyclic, it can be written as a
hierarchy.
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After Making the Hierarchy

Assign higher priorities to process that are higher in the
graph.

This method assumes that processes are usually
blocked:

g Long-running tasks should have low priority.

g Interactive tasks should have high priority.
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Hierarchy for Assignment 1

Let’s build the hierarchy for the suggested process
structure for Assignment 1.

First, make each task name unique.
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Hierarchy for Assignment 1, Cont’d
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Hierarchy for Assignment 1, Cont’d
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OS Design Principles

Two choices:

g Monolithic

g Microkernel
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Monolithic

g Entire OS runs in kernel space.
g The OS is one big program.

Applications

Kernel = OS

User
Space

Kernel
Space
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Monolithic, Cont’d

g The OS is easy to get wrong!

g If one OS module fails, the entire OS may go
down.

g But, the OS is very efficient, once the bugs are
worked out; less communication overhead
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Microkernel

g The kernel, consisting of only memory
management (GDT), IPC, scheduling, is small.

g Non-essential OS services are implemented as
user-space programs, called servers, which include
file systems, device drivers, and networking.
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Microkernel, Cont’d
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Microkernel, Cont’d

g If an OS service fails, it can be restarted without
bringing down the kernel.

g Performance depends on
f fast IPC and
f fast context switching.

g Server development is easier than kernel
development

g The OS is more secure, in the sense that less of the
OS has access to all of memory.
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Microkernel, Cont’d

Examples:

Mach, QNX, Minix, AmigaOS

First Microkernel OS, that happened also to be real
time:

D.R. Cheriton, M.A. Malcom, L.S. Melen, G.R. Sager,
“Thoth, A Portable Real-Time Operating System,
Communications of the ACM, 22:2, pp. 105–115,
February 1975.
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Application Code

The same design question can be applied to application
code:

“One task or several?”

or

“Why not make the application a big loop polling the
user’s input?”
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Task Abstraction

A task

g is an independent autonomous agent and

g can be a basic application structuring unit.
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Task Abstraction, Cont’d

An individual task is easy to understand; it
g is sequential,
g is deterministic,
g executes independently,
g has its own address space, and
g interacts with other tasks through visible interfaces.

The behavior of a server is specified by the messages it
receives and the reply it generates in response to each
received message.
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E.g., the clockServer is specified by the semantics of
its methods:

g Delay,

g GetTime, and

g DelayUntil.
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Multiprocess Structuring

Multiprocess structuring can be done using stereotyped
team structures and team members, …

Sort of process patterns
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Task Stereotypes

g Servers

g Workers

g Clients
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Server Stereotypes

g proprietor — synchronizes accesses to a resource,
e.g., serial server, for, e.g. video display

g distributor — acquires data, stores, and distributes
them, e.g., state of track

g administrator — assigns and monitors work done
by other tasks, e.g., managing a pool of worker
tasks
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Worker Stereotypes

g notifier — monitors events

g courier — moves data from server to server

g guard — controls accesses to a server
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Client Stereotypes

g usually application specific — drives the high-level
application logic.
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Proprietor

According to Cheriton, a proprietor manages a resource
and provides synchronous access, using mutual
exclusion

Proprietor(){
Initialize();
while(1){

(pid,request) ← Receive();
Reply(pid,Service(pid,request));

}
}
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Proprietor, Cont’d

The details of Service distinguishes one proprietor
from another.
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Proprietor, Cont’d

The train command proprietor

g deals with one client at a time and
g may send messages to other servers.
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Adminstrator

According to Morven Gentleman, an administrator

g is a generalized proprietor,
g may spawn workers, or agents, to handle requests,
g may prioritize requests, so that service is not

always FIFO, and
g can use parameters in the clients’ messages to

determine which client’s request to process next.
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Adminstrator, Cont’d
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Consider This Situation
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Server 1 needs to send data to Server 2.
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Situation, Cont’d

g If Server 1 sends to Server 2, then Server 1 is
SEND_BLOCKED. ∴, Server 1 cannot receive
from a client.

g Same for Server 2

In general, servers should not ever do Send.
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Solution

Have a courier task.
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Courier

A courier moves data from one specified server, named
by pid0, to another specified server, named by pid1.

So it is a worker.

Courier(pid0,pid1){
while(1){

Send(pid0,msg1,msg0);
Send(pid1,msg0,msg1);

}
}
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Generic Courier

CreateCourier(pid) — an OS service, and is optional.

This does Courier(MyPid(),pid).
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Other Worker Stereotypes

Notifiers

Guards

For more details, see W.M. Gentleman, “Message
Passing Betwen Sequential Processors: the Reply
Primitive and the Administrator Concept”, Software
Practice & Experience, 11, pp.436–466, 1981.
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Suggest Train Application
Structure

As suggested by Gentleman:
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Train Application Structure
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Structure, Cont’d

Verifying that this graph as no cycles is left as an
exercise for the student!

What are the processes that have no outgoing arcs?

As a matter of fact, it has no cycles!
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Two Administrators

g Track Administrator mangages current state of the
track and the positions of the trains.

g Sensor Administrator summarizes and validates
sensor information; it interprets each sensor hit as
evidence of a train’s position, as spurious, or as
indicating hardware failure.
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Other Tasks

g Timer sends a message every k ticks.

g Engineer computes the next objective for one train,
either move forward on completion of a subgoal or
complete an alternative on failure.

g Control Signal Driver sends commands to the track.

g Manual Interface passes on user commands.
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Multiple Administrators

g increases modularity and

g decreases wait time for time-critical clients, e.g.
Notifiers.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 69

  

    


