
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Assigment 1 Process Structure

Serial

Guard
Write

Commands
User

Server
Train

Guard
Read

Guard
Write

Server
Serial

Notifier

Server

Guard
Read

Events
Clock

Events
WYSE

Events
Train

Status
Track

Notifier

Server
Clock

Display
Time

Notifier

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

Process

This graph shows only Sends.

Replys, in the opposite directions are implied; so it is
not necessary to show them.

Also, later, a potential deadlock detection algorithm
depends on having only Send arcs.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Steady State

The diagram represents the steady state after all
initialization is done.

∴, communication during initialization, e.g. with the
name server, is not included.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

You Already Know

You already know about:

g the various events,
g notifiers,
g serial servers,
g guards, and
g the clock server.

We talk about what is new.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

Train Server

The train server

g receives high-level train commands from tasks,

g issues commands to track, and

g replies track information.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

User Commands

The user commands process

g prompts user and

g issues commands.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Track Status

The track status process

g requests sensor updates from train server,

g gets current time, and

g displays updates on the WYSE.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Time Display

The time display process

g does GetTime() and

g displays time on the WYSE.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Priority Inversion

Priority inversion (PI) occurs when a task is forced to
wait on another task of lower priority.

E.g.,

Task t 1 with priority p 1, ready

Task t 2 with priority p 2, ready

Task t 3 with priority p 3, ready

p 1 < p 2 < p 3. ∴ t 3 is running.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Priority Inversion, Cont’d

Two different scenarios.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Scenario 1

t 3 sends to t 1

→ t 3 waits while t 2 runs

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Scenario 1, Cont’d

>
>

3p3t

2t

1t 1p

2p

Not Running
Ready &

Blocked

Running

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Scenario 2

t 3 is blocked.

t 2 sends to t 3 and blocks.

t 1 sends to t 3 and blocks.

t 3 gets unblocked.

→ one possibility is that t 2 waits while t 3 services
t 1’s request.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Scenario 2, Cont’d

’s request1t
Running

Blocked

>
>

3p3t

2t

1p

2pBlocked

1t

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Scenarios Only Possible

Each of these scenarios is possible, not guaranteed.

But the possibility is enough to cause problems if the
possibility becomes a reality.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

Duration of an Inversion

The duration of a priority inversion can be unbounded
or uncontrolled.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Real-Life Example of PI

In the Mars Pathfinder, tasks communicate via an
information bus.

g The bus management task, that moves data through
the bus, is of high priority.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Real-Life Example of PI, Cont’d

g The meterological data gathering task runs
infrequently and is of low priority. This task uses
the bus directly, by
f acquiring a semaphore, writing to the bus, and

releasing the semaphore, the same semaphore
the bus management task uses to access the bus,

f so as not to interfere with the information bus
management task.

g The communications task is of medium priority.

These priority assignments make sense.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

Problematic Scenario

A HW interrupt causes the bus management task to
wake up.

However, the meterological data gathering task holds
the semaphore.

∴, the bus manager must wait until data gathering task
gives up the semaphore.

Priority inversion!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Problematic Scenario, Cont’d

This priority inversion is normally not a problem.

However, if the medium priority task gets scheduled
before the semaphore is released, then the bus
management task cannot run.

The implemented solution: Eventually a watchdog task
detects that the bus manager has not run for some time,
concludes that there is a problem, and resets the
system.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Problematic Scenario, Cont’d

For the Mars Pathfinder, this reset is OK and does not
cause any real problem because there is no state to
remember; it always sends just the current data.

For your trains software, there is state, namely the
setting of all switches, the location of all trains, etc.

So a reset is not an acceptable solution to priority
inversion.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

How to Fix Priority Inversion

Use priority inheritance!

That is, cause a task t to temporarily inherit a higher
priority from the higher priority task that depends on t.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

Solving Scenario 1

If tasks t 1 , . . . ,t n are SEND_BLOCKED or
REPLY_BLOCKED on t 0,

actualPriority(t 0) =
0≤i≤n
MAX (assignedPriority (t i))

I.e., promote t 0 to have the highest of the priorities of
the tasks waiting on t 0. Then a medium priority task
cannot preempt t 0.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

Solving Scenario 1, Cont’d

p1

>
>

Solution 1

Running

Blocked

t1

t2

t3 Blocked

t1

t2

t3

Running

2

p3

p3
Ready &
Not Running

Ready &
Not Runningp

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

Solving problem 2

The next message received is from the highest priority
SEND_BLOCKED task.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

Solving Scenario 2, Cont’d

p1

>
>

Blocked

Running
t1’s request

Solution 1 Solution 2

=t0 t3

NOT

Run

first.
’s request

2

t3 p3 p3

1t

t2

t2

Blocked p

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

Implementation

Implementation of these solutions requires:

g order tasks by priority on any Send queue

OR

g multiple queues per task, one for each priority

Also for Solution 1, also REPLY_BLOCKED tasks
must be tracked.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

Deadlock!

Note that priority inheritance prevents priority
inversion, but not deadlock

Deadlock is a cyclic resource dependency.

Among tasks t 0 , ... , t n − 1, each task t i holds a resource
that is needed by t (i + 1) mod n to proceed.

∴, None of t 0 , ... , t n − 1 can ever run.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

Cyclic Resource Dependency

A cyclic resource dependency is called also “a cyclic
send pattern”.

3t

2t1t

0t

If each T i Sends before any T i Receives, the tasks
deadlock.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

Deadlock, Cont’d

A cycle in the steady-state process diagram indicates a
potential deadlock.

∴, in your applications, your steady-state diagram must
be an acyclic graph, as is the graph at the beginning of
this section of slides.

If the process diagram is acyclic, it can be written as a
hierarchy.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

Hierarchy

P5

P4

P

P4

P1

3

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

After Making the Hierarchy

Assign higher priorities to process that are higher in the
graph.

This method assumes that processes are usually
blocked:

g Long-running tasks should have low priority.

g Interactive tasks should have high priority.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Hierarchy for Assignment 1

Let’s build the hierarchy for the suggested process
structure for Assignment 1.

First, make each task name unique.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

Hierarchy for Assignment 1, Cont’d

Serial

GuardW
Write

Commands
User

Server
Train

GuardW
Read

GuardT
Write

ServerT
Serial

NotifierT

ServerW

GuardT
Read

Events
Clock

Events
WYSE

Events
Train

Status
Track

NotifierC

Server
Clock

Display
Time

NotifierW

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

Hierarchy for Assignment 1, Cont’d

ServerW
Serial

ServerT
Serial

GuardT
Read

NotifierT

Clock

Display
Time

Commands
User

Status
Track

Server
Train

GuardT
Write

NotifierW GuardW
Read

GuardW
Write

NotifierC

Server

<
<

<

1
p

2
p

3
p

4
p

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

OS Design Principles

Two choices:

g Monolithic

g Microkernel

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

Monolithic

g Entire OS runs in kernel space.
g The OS is one big program.

Applications

Kernel = OS

User
Space

Kernel
Space

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 38

Monolithic, Cont’d

g The OS is easy to get wrong!

g If one OS module fails, the entire OS may go
down.

g But, the OS is very efficient, once the bugs are
worked out; less communication overhead

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 39

Microkernel

g The kernel, consisting of only memory
management (GDT), IPC, scheduling, is small.

g Non-essential OS services are implemented as
user-space programs, called servers, which include
file systems, device drivers, and networking.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 40

Microkernel, Cont’d

Kernel
Space

User
Space

Applications

Kernel

Servers

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 41

Microkernel, Cont’d

g If an OS service fails, it can be restarted without
bringing down the kernel.

g Performance depends on
f fast IPC and
f fast context switching.

g Server development is easier than kernel
development

g The OS is more secure, in the sense that less of the
OS has access to all of memory.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 42

Microkernel, Cont’d

Examples:

Mach, QNX, Minix, AmigaOS

First Microkernel OS, that happened also to be real
time:

D.R. Cheriton, M.A. Malcom, L.S. Melen, G.R. Sager,
“Thoth, A Portable Real-Time Operating System,
Communications of the ACM, 22:2, pp. 105–115,
February 1975.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 43

Application Code

The same design question can be applied to application
code:

“One task or several?”

or

“Why not make the application a big loop polling the
user’s input?”

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 44

Task Abstraction

A task

g is an independent autonomous agent and

g can be a basic application structuring unit.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 45

Task Abstraction, Cont’d

An individual task is easy to understand; it
g is sequential,
g is deterministic,
g executes independently,
g has its own address space, and
g interacts with other tasks through visible interfaces.

The behavior of a server is specified by the messages it
receives and the reply it generates in response to each
received message.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 46

E.g., the clockServer is specified by the semantics of
its methods:

g Delay,

g GetTime, and

g DelayUntil.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 47

Multiprocess Structuring

Multiprocess structuring can be done using stereotyped
team structures and team members, …

Sort of process patterns

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 48

Task Stereotypes

g Servers

g Workers

g Clients

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 49

Server Stereotypes

g proprietor — synchronizes accesses to a resource,
e.g., serial server, for, e.g. video display

g distributor — acquires data, stores, and distributes
them, e.g., state of track

g administrator — assigns and monitors work done
by other tasks, e.g., managing a pool of worker
tasks

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 50

Worker Stereotypes

g notifier — monitors events

g courier — moves data from server to server

g guard — controls accesses to a server

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 51

Client Stereotypes

g usually application specific — drives the high-level
application logic.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 52

Proprietor

According to Cheriton, a proprietor manages a resource
and provides synchronous access, using mutual
exclusion

Proprietor(){
Initialize();
while(1){

(pid,request) ← Receive();
Reply(pid,Service(pid,request));

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 53

Proprietor, Cont’d

The details of Service distinguishes one proprietor
from another.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 54

Proprietor, Cont’d

The train command proprietor

g deals with one client at a time and
g may send messages to other servers.

server
serial

command
train

.

.

.

.

.

Cn

C1

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 55

Adminstrator

According to Morven Gentleman, an administrator

g is a generalized proprietor,
g may spawn workers, or agents, to handle requests,
g may prioritize requests, so that service is not

always FIFO, and
g can use parameters in the clients’ messages to

determine which client’s request to process next.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 56

Adminstrator, Cont’d

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

C1

Cn

Administrator

Workern

Worker1

.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 57

Consider This Situation

?
server2server1

.

.

.

.

.

Cm’

C1’

.

.

.

.

C1

Cn

.

Server 1 needs to send data to Server 2.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 58

Situation, Cont’d

g If Server 1 sends to Server 2, then Server 1 is
SEND_BLOCKED. ∴, Server 1 cannot receive
from a client.

g Same for Server 2

In general, servers should not ever do Send.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 59

Solution

Have a courier task.

.

.

.

.

C1’

Cm’

.

.

.

.

.

server2courierserver1

.

C1

Cn

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 60

Courier

A courier moves data from one specified server, named
by pid0, to another specified server, named by pid1.

So it is a worker.

Courier(pid0,pid1){
while(1){

Send(pid0,msg1,msg0);
Send(pid1,msg0,msg1);

}
}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 61

Generic Courier

CreateCourier(pid) — an OS service, and is optional.

This does Courier(MyPid(),pid).

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 62

Other Worker Stereotypes

Notifiers

Guards

For more details, see W.M. Gentleman, “Message
Passing Betwen Sequential Processors: the Reply
Primitive and the Administrator Concept”, Software
Practice & Experience, 11, pp.436–466, 1981.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 63

Suggest Train Application
Structure

As suggested by Gentleman:

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 64

Train Application Structure

.

.

Timer

.

Notifier
Sensor

Admin’or
Sensor

Interface
Manual Control

Signal
Driver

Admin’or
Track

Engineer
(Train n)

Courier

Timer
Engineer
(Train 0)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 65

Structure, Cont’d

Verifying that this graph as no cycles is left as an
exercise for the student!

What are the processes that have no outgoing arcs?

As a matter of fact, it has no cycles!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 66

Two Administrators

g Track Administrator mangages current state of the
track and the positions of the trains.

g Sensor Administrator summarizes and validates
sensor information; it interprets each sensor hit as
evidence of a train’s position, as spurious, or as
indicating hardware failure.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 67

Other Tasks

g Timer sends a message every k ticks.

g Engineer computes the next objective for one train,
either move forward on completion of a subgoal or
complete an alternative on failure.

g Control Signal Driver sends commands to the track.

g Manual Interface passes on user commands.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 68

Multiple Administrators

g increases modularity and

g decreases wait time for time-critical clients, e.g.
Notifiers.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 69

