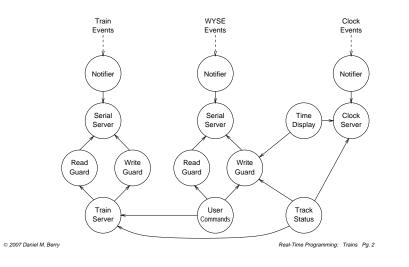
CS452/652 Real-Time Programming Course Notes

Daniel M. Berry, Cheriton School of Computer Science University of Waterloo

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 1

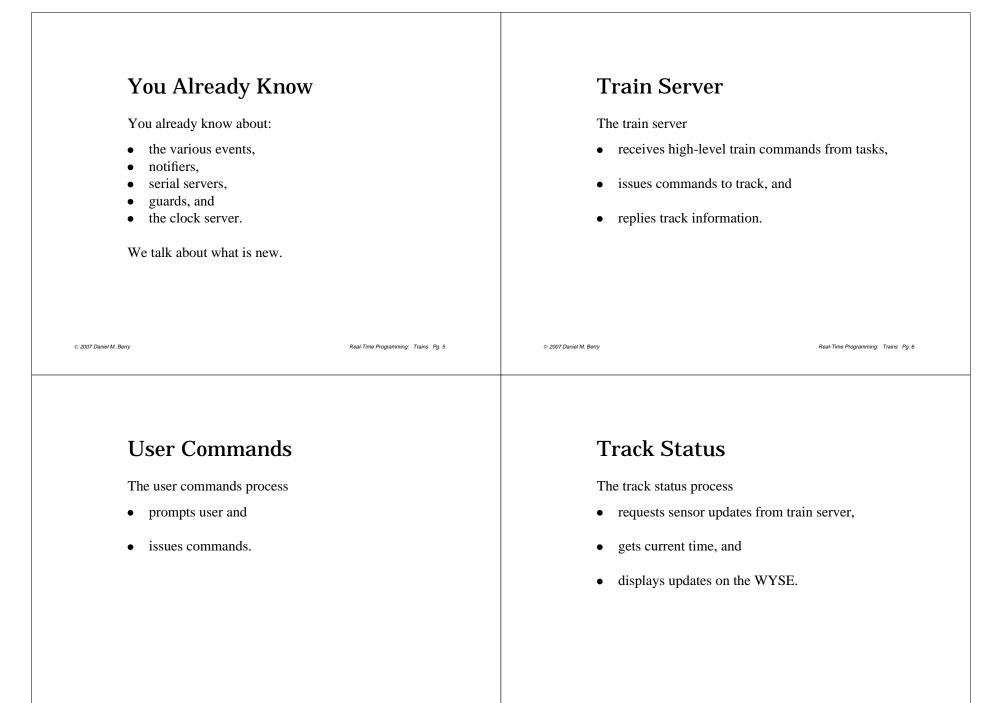

Process

This graph shows only Sends.

Replys, in the opposite directions are implied; so it is not necessary to show them.

Also, later, a potential deadlock detection algorithm depends on having only Send arcs.

Assigment 1 Process Structure



Steady State

The diagram represents the steady state after all initialization is done.

 \therefore , communication during initialization, e.g. with the name server, is not included.

© 2007 Daniel M. Berry

Time Display

The time display process

- does GetTime() and
- displays time on the WYSE.

Priority Inversion

Priority inversion (PI) occurs when a task is forced to wait on another task of lower priority.

E.g.,

Task t_1 with priority p_1 , ready Task t_2 with priority p_2 , ready

Task t_3 with priority p_3 , ready

 $p_1 < p_2 < p_3$. \therefore t_3 is running.

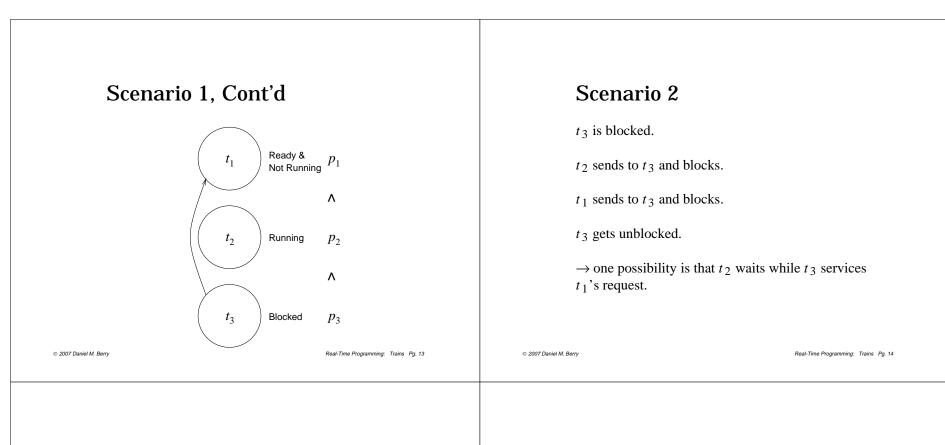
© 2007 Daniel M. Berry			

Real-Time Programming: Trains Pg. 9

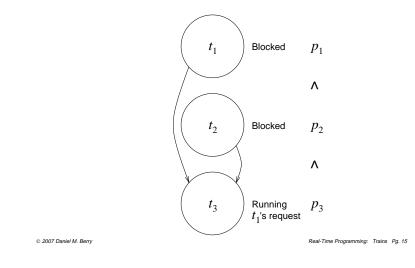
© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 10

Priority Inversion, Cont'd


Two different scenarios.

Scenario 1


 t_3 sends to t_1

 \rightarrow t₃ waits while t₂ runs

© 2007 Daniel M. Berry

Scenario 2, Cont'd

Scenarios Only Possible

Each of these scenarios is possible, not guaranteed.

But the possibility is enough to cause problems if the possibility becomes a reality.

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 16

Duration of an Inversion Real-Life Example of PI The duration of a priority inversion can be unbounded In the Mars Pathfinder, tasks communicate via an or uncontrolled. information bus. The bus management task, that moves data through • the bus, is of high priority. © 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17 © 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18 Real-Life Example of PI, Cont'd **Problematic Scenario** The meterological data gathering task runs A HW interrupt causes the bus management task to • infrequently and is of low priority. This task uses wake up. the bus directly, by • acquiring a semaphore, writing to the bus, and However, the meterological data gathering task holds releasing the semaphore, the same semaphore the semaphore. the bus management task uses to access the bus,

 \therefore , the bus manager must wait until data gathering task gives up the semaphore.

Priority inversion!

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 19

• so as not to interfere with the information bus

• The communications task is of medium priority.

management task.

These priority assignments make sense.

Problematic Scenario, Cont'd

This priority inversion is normally not a problem.

However, if the medium priority task gets scheduled before the semaphore is released, then the bus management task cannot run.

The implemented solution: Eventually a watchdog task detects that the bus manager has not run for some time, concludes that there is a problem, and resets the system.

Problematic Scenario, Cont'd

For the Mars Pathfinder, this reset is OK and does not cause any real problem because there is no state to remember; it always sends just the current data.

For your trains software, there is state, namely the setting of all switches, the location of all trains, etc.

So a reset is not an acceptable solution to priority inversion.

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 22

How to Fix Priority Inversion

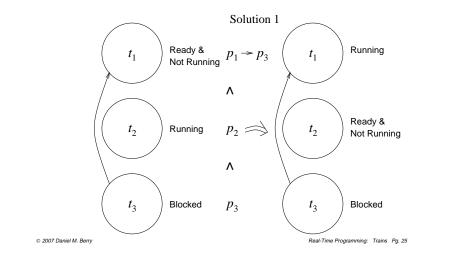
Use priority inheritance!

That is, cause a task *t* to temporarily inherit a higher priority from the higher priority task that depends on *t*.

Solving Scenario 1

If tasks t_1, \dots, t_n are SEND_BLOCKED or REPLY_BLOCKED on t_0 ,

actualPriority $(t_0) = \underset{0 \le i \le n}{\text{MAX}} (assignedPriority} (t_i))$

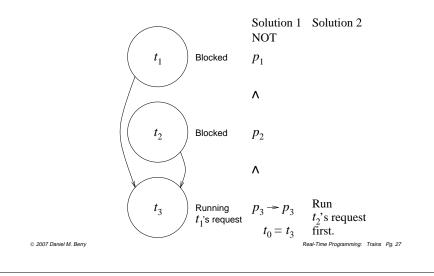

I.e., promote t_0 to have the highest of the priorities of the tasks waiting on t_0 . Then a medium priority task cannot preempt t_0 .

© 2007 Daniel M. Berry

© 2007 Daniel M. Bern

Real-Time Programming: Trains Pg. 21

Solving Scenario 1, Cont'd


Solving problem 2

The next message received is from the highest priority SEND_BLOCKED task.

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 26

Solving Scenario 2, Cont'd

Implementation

Implementation of these solutions requires:

• order tasks by priority on any Send queue

OR

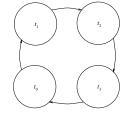
• multiple queues per task, one for each priority

Also for Solution 1, also REPLY_BLOCKED tasks must be tracked.

```
© 2007 Daniel M. Berry
```

Deadlock!

Note that priority inheritance prevents priority inversion, but not *deadlock*


Deadlock is a cyclic resource dependency.

Among tasks $t_0, ..., t_{n-1}$, each task t_i holds a resource that is needed by $t_{(i+1) \mod n}$ to proceed.

 \therefore , None of t_0, \dots, t_{n-1} can ever run.

Cyclic Resource Dependency

A cyclic resource dependency is called also "a cyclic send pattern".

If each T_i Sends before any T_i Receives, the tasks deadlock.

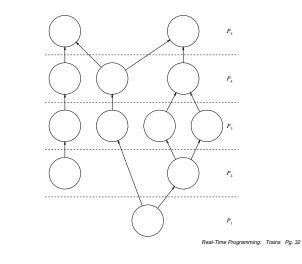
Real-Time Programming: Trains Pg. 30

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 29

Deadlock, Cont'd

A cycle in the *steady-state* process diagram indicates a potential deadlock.


 \therefore , in your applications, your steady-state diagram *must* be an acyclic graph, as is the graph at the beginning of this section of slides.

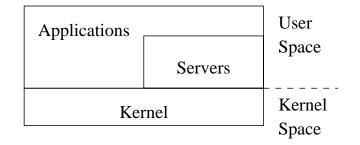
If the process diagram is acyclic, it can be written as a hierarchy.

Hierarchy

© 2007 Daniel M. Berry

© 2007 Daniel M. Berry

Monolithic **OS** Design Principles Two choices: • Entire OS runs in kernel space. The OS is one big program. • Monolithic User Microkernel Applications Space Kernel Kernel = OSSpace Real-Time Programming: Trains Pg. 38 © 2007 Daniel M. Berry © 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37


Monolithic, Cont'd

- The OS is easy to get wrong!
- If one OS module fails, the entire OS may go down.
- But, the OS is very efficient, once the bugs are worked out; less communication overhead

Microkernel

- The kernel, consisting of only memory management (GDT), IPC, scheduling, is small.
- Non-essential OS services are implemented as user-space programs, called *servers*, which include file systems, device drivers, and networking.

Microkernel, Cont'd

Microkernel, Cont'd

- If an OS service fails, it can be restarted without bringing down the kernel.
- Performance depends on
 - $\circ \quad fast \ IPC \ and \\$
 - fast context switching.
- Server development is easier than kernel development
- The OS is more secure, in the sense that less of the OS has access to all of memory.

Microkernel, Cont'd

Examples:

Mach, QNX, Minix, AmigaOS

First Microkernel OS, that happened also to be real time:

D.R. Cheriton, M.A. Malcom, L.S. Melen, G.R. Sager, "Thoth, A Portable Real-Time Operating System, *Communications of the ACM*, **22**:2, pp. 105–115, February 1975.

Application Code

The same design question can be applied to application code:

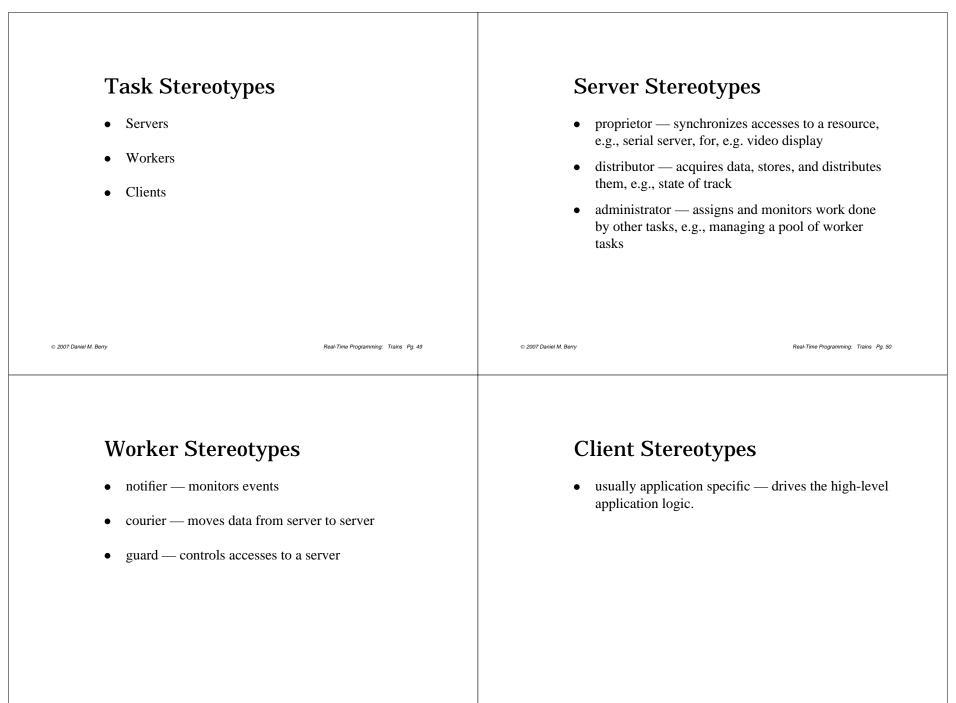
"One task or several?"

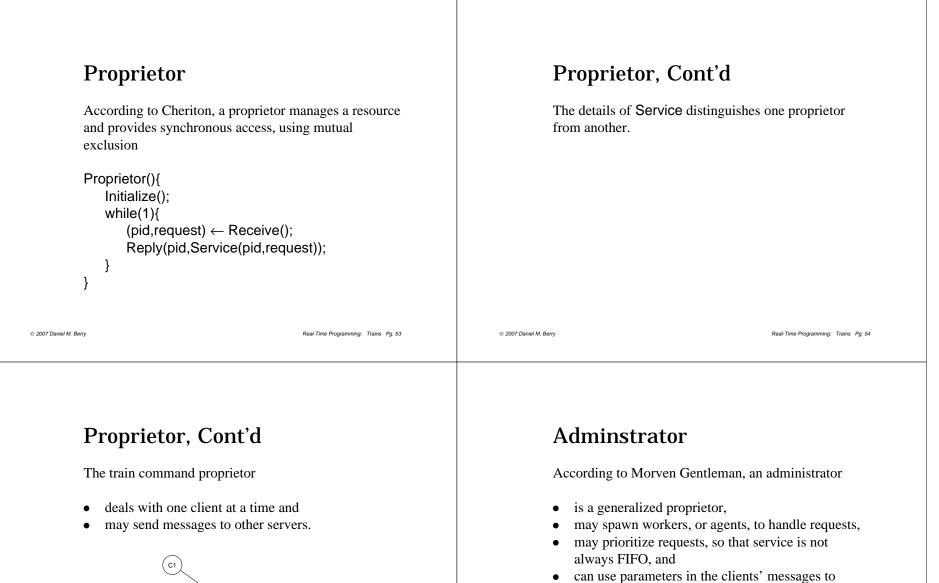
or

"Why not make the application a big loop polling the user's input?"

© 2007 Daniel M. Berry

© 2007 Daniel M. Berry

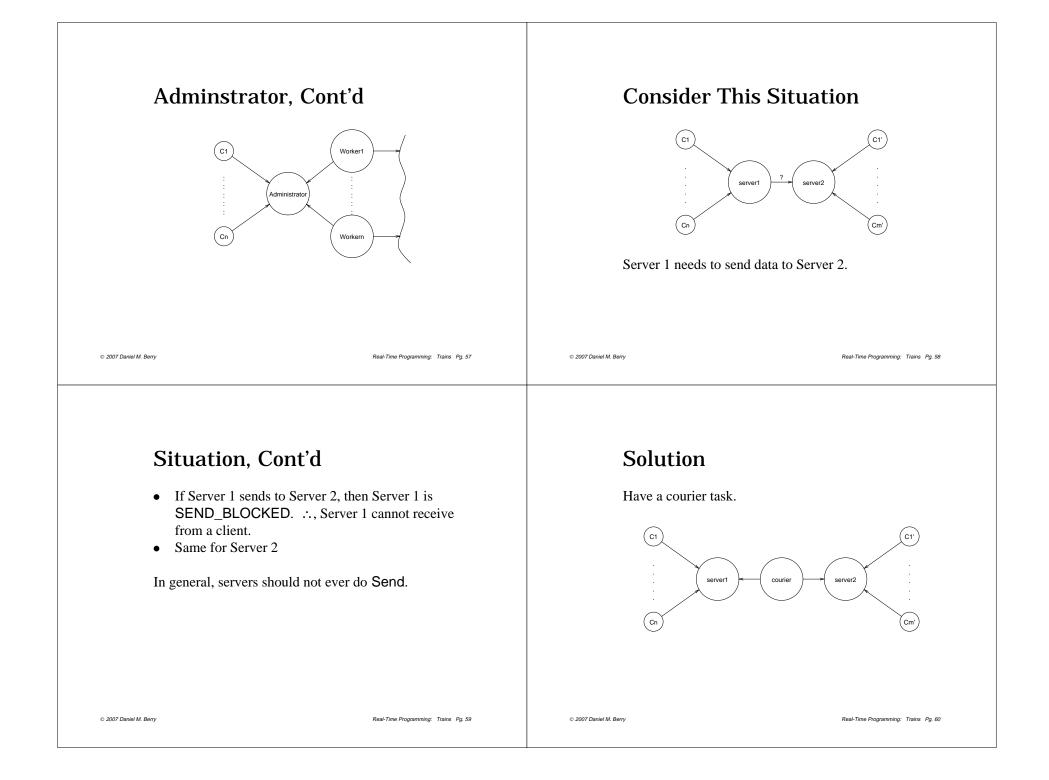

Real-Time Programming: Trains Pg. 41

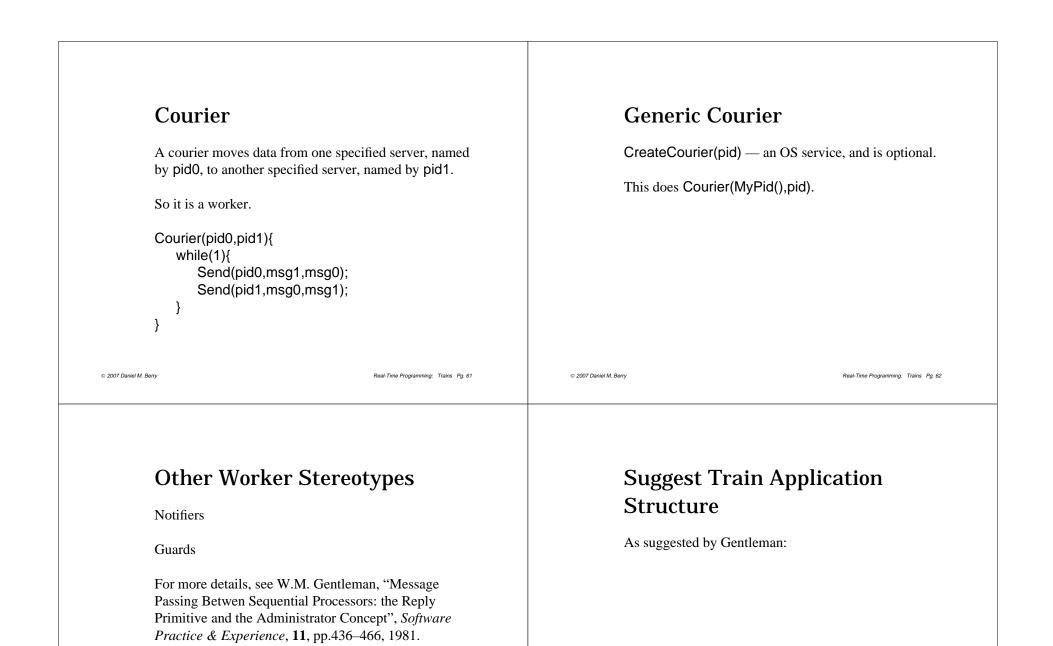

© 2007 Daniel M. Berry

© 2007 Daniel M. Berry

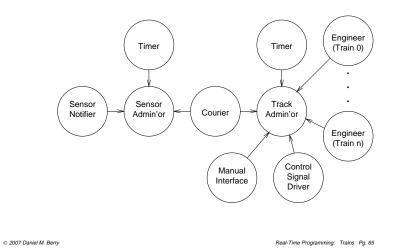
Real-Time Programming: Trains Pg. 42

Task Abstract	ion	Task Abstr	raction, Cont'd	
A taskis an independent autonomous agent andcan be a basic application structuring unit.		 An individual task is easy to understand; it is sequential, is deterministic, executes independently, has its own address space, and interacts with other tasks through <i>visible</i> interfaces. The behavior of a server is specified by the messages it receives and the reply it generates in response to each received message.		
© 2007 Daniel M. Berry	Real-Time Programming: Trains Pg. 45	© 2007 Daniel M. Berry	Real-Time Programming: Trains Pg. 46	
E.g., the clockServer is its methods:Delay,GetTime, and	specified by the semantics of	Multiprocess Structuring Multiprocess structuring can be done using stereotyped team structures and team members, Sort of process patterns ⓒ		
• DelayUntil.				
© 2007 Daniel M. Berry	Real-Time Programming: Trains Pg. 47	© 2007 Daniel M. Berry	Real-Time Programming: Trains Pg. 48	




determine which client's request to process next.

serial server


train command

Cn

Train Application Structure

Structure, Cont'd

Verifying that this graph as no cycles is left as an exercise for the student!

What are the processes that have no outgoing arcs?

As a matter of fact, it has no cycles!

© 2007 Daniel M. Berry

Real-Time Programming: Trains Pg. 66

Two Administrators

- Track Administrator mangages current state of the track and the positions of the trains.
- Sensor Administrator summarizes and validates sensor information; it interprets each sensor hit as evidence of a train's position, as spurious, or as indicating hardware failure.

Other Tasks

- Timer sends a message every *k* ticks.
- Engineer computes the next objective for one train, either move forward on completion of a subgoal or complete an alternative on failure.
- Control Signal Driver sends commands to the track.
- Manual Interface passes on user commands.

	Multiple Administrators
	• increases modularity and
	• decreases wait time for time-critical clients, e.g. Notifiers.
© 2007 Daniel M. Be	ry Real-Time Programming: Trains Pg. 69