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Train Tracking

Objective:

g to know where the trains are at all times
g to send the trains to specific destinations
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Train Tracking, Cont,d

Complications:

g A train’s speed is not always what it should be, i.e.,
even with no speed change command, a train’s
speed changes.

g Different trains behave differently.

g Speed change is not instantaneous; a train
accelerates and decelerates.
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Train Tracking, Cont,d

g Any sensor may not fire when a train is present, or
it may fire in the absence of any train.

g Any switch may not respond to commands.

g An act of God may cause a train to removed from
the track, a train to be put down on the track, a
sensor to be tripped, or a switch to be thrown (the
marker acting as God ).
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Notation for Track Position

See the course Website

g sensor# + offset
g sw#[s/c] + offset
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Tracking Assignment 1

g one train,
g marks based on accuracy of system’s display of

train location,
g command init trainNumber finds a given train on

the track,
g run the train, throw switches, stop the train, check

actual location compared to displayed location,
g error recovery: tracker must be able to handle

spurious sensor hits, failed switching, acts of God,
etc.
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Strong Hint

Design for the final result from the beginning:

g support offsets,

g choose algorithms that scale well to multiple trains,

g test all events, including low-probability events.
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Train Tracking

The distance D i that a train t i can travel in k clock
ticks is a random variable.

D i ~ N(µ i ,σ i )

~ N is read “varies according to the normal
distribution” where µ and σ are as on the graph on the
next slide
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Normal Distribution

σ

µ
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PDF

Probability distribution function (pdf):

p(x) =
σ√ddd2π

1hhhhhhh e 2σ2
− (x − µ)2
hhhhhhhhh
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PDF, Cont’d

Note that this function, given µ, the expected location
of a train, σ, the standard deviation about that µ, and
an x, the location of a sensor trip, computes the
probability p(x) that the sensor trip corresponds to the
expected location µ.
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PDF, Cont’d

The existence of this function means that you can
program this function as a procedure that is invokable
at any time.

So all your program has to keep track of is µs and σs.

The rest of this section describes how to determine a
new µ i and and a new σ i for train i from older ones
under a variety of circumstances.
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Addition of Random Variables

Random variables add as follows:

D i ′ ~ N(µ i ′ ,σ i ′)

D i + D i ′ ~ N(µ i + µ i ′ ,√dddddσi
2 + σ i ′

2 )

That is, the means add and the variances, not the
standard deviations, add.

∴, the distance traveled in 2k clock ticks is

~ N(2µ i ,√dd2 σ i )
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Train’s Position

On the basis of these distributions, a train’s position is
a probability distribution, shown on the next slide:
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Train’s Position, Cont’d

Each track line represents a different time, from top to
bottom, at 1k, 2k, 3k, 4k, 5k, and 6k ticks.

Note that the distribution widens and flattens over time.

The idea is to try to locate the train with enough
certainty that the distribution is collapsed to a spike
and you start all over with ever widening and flattening
distributions.
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Sensor Hit

On a sensor hit, the distance from the expected position
gives the probability that the sensor was triggered by
the train.

(sensor is valid)p

sensor hit expected position
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Confidence Zone

Confidence Zone

xx

c%

(µ,              )

µ

1

µ2π

with c = 95 or some other high number
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Confidence Zone, Cont’d

The area symmetric about µ that covers c% of the area
under the curve is the confidence zone.

We say “With c% probability, the train is in this zone.”

If the sensor hit is outside, then with c% probability,
the hit is spurious.
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Highest Probability

µ

The zone right around µ has the highest probability of
containing the train.
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Highest Probability, Cont’d

Find a suitable size for this zone, e.g., 2 cm?

If the sensor hits in this highest probability zone, then
believe that the train is there with certainty and
collapse the curve, and reset time to 0.

µ
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In Between

In the rest of the confidence zone, assign intermediate
confidence to the sensor hit, i.e., calculate a new
distribution for the next k ticks point that is flatter and
wider than the current one.
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New Distribution

If the sensor hit is valid with probability p and invalid
with probability 1 − p, then the new distribution is D:

Let D i be the current distribution of train i’s position,
and let s i be the sensor position of train i, where
s i ~ N(µ ,0), where µ is the definite location of the
sensor and µ i is the expected location of train i..

D = (1 − p) D i + ps i

D ~ N((1 − p) µ i + pµ , σ i √dddd1 − p )
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Going Over a Switch

As a train is about to go over a switch, the expected
path is determined by the program’s model of the
direction in which the switch is thrown.

However, there is a small probability, p, that your
program’s model of the direction of any switch is
wrong

We estimate this probability as about 1%.
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Going Over a Switch, Cont’d

Although acts of God have been known to change this
probability.

By the way, these acts of God, in which you play God,
are a good way to test how well your program reacts to
low probability events, which may never happen in a
normal test.
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Going Over a Switch, Cont’d

Split the distribution into: (1 − p) D correct and
pD incorrect
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Going Over a Switch, Cont’d

If an expected sensor fires in the high confidence zone
on one or both paths, collapse the curve as before:

x

x
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Going Over a Switch, Cont’d

The inclusion of the word “both” may be
counterintuitive to you.

You are right!

If both sensors just after a switch fire, then the
probability that the train is on each branch is 50% of
the probability that it was at the switch.
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Going Over a Switch, Cont’d

However, under each choice, the location is accurate
and is a good basis for estimating at the next k tick
point where the train should be in the track that flows
from the choice.

But because of the uncertainty about which choice was
taken, you have to keep both distributions active until
you become sufficiently certain, as a result of
additional distribution collapsing sensor hits, about
which choice was taken.
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Going Over a Switch, Cont’d

Further down the line, we expect that the next sensor of
the branch not taken by the train to not report any hit.
So we consider how to use that non-hit to begin to
discount that branch’s distribution.
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Going Over a Switch, Cont’d

If an expected sensor does not report any hit, scale its
distribution down by some factor f and renormalize.

On the assumption that a switch is not likely to fail
temporarily more than once in an interval that matters,
this f is a number in the range of 2 through 6 or so, that
has to be determined experimentally.
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Going Over a Switch, Cont’d

Suppose D A and D B are the distributions of two
maintained paths A and B.

Start with p A D A + p B D B , where p A + p B = 1

B failing to report an expected sensor hit maps to

p A +
f

p Bhhhh

p A D A +
f

p Bhhhh D B
hhhhhhhhhhhhhhh
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Going Over a Switch, Cont’d

This diminishes D B and amplifies D A .

Once D B’s amplitude falls below a certain threshold,
remove it and renormalize the remaining distributions.

This can be generalized to any number of maintained
paths, e.g, for a switch right after another, yielding
three maintained paths, A, B, and C.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Going Over a Switch, Cont’d

Start now with p A D A + p B D B + p C D C , where
p A + p B + p C = 1

C failing to report an expected sensor hit maps to

p A + p B +
f

p Chhhh

p A D A + p B D B +
f

p Chhhh D C
hhhhhhhhhhhhhhhhhhhhhh
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Going Over a Switch, Cont’d

This diminishes D C and amplifies D A and D B .

Once D C’s amplitude falls below a certain threshold,
remove it and renormalize the remaining distributions.
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Going Over a Switch, Cont’d

Recall that we have been talking what happens if an
expected sensor fires in the high confidence zone in
both paths following a switch.

The most common circumstance is that only one
expected sensor fires in the two high confidence zones.

In that case, believe it!
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Tracking Assignment 2

g multiple trains

g routing

Routing is sending a train to a specified location.

The track is a graph, in which each switch is a node.

Therefore, routing ≡ graph search
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Graph Search Algorithms

g Depth-first search

g Breadth-first search

g Iterate deepening depth-first search

g Dijkstra’s algorithm

g Floyd-Warshall algorithm
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Depth-First Search

Go down the graph, expanding children until none
remain, then backtrack and check siblings

76

5

43

2

1
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Depth-First Search, Cont’d

DFS (start,goal){
if (start == goal) {

stop;
} else {

foreach child, v, of start {
DFS(v,goal);

}
}

}
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Depth-First Search, Cont’d

If G = (V ,E), run time is O( | V | + | E | ).

DFS(s,g) may not terminate if the graph has a cycle.

g need to keep track of visited nodes,

g first solution may not be the shortest possible
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Breadth-First Search

Go across the graph, examining all children, before
descending to grandchildrem.

54

3

76

2

1

Needs data structure, a queue of nodes to visit.
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Breadth-First Search, Cont’d

BFS(Q,goal) {
q = dequeue(Q);
if (q == goal) {

stop;
} else {

foreach child, v, of q {
Q = enqueue(Q,v);

}
BFS(Q,goal);
}

}
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Breadth-First Search, Cont’d

g if G = (V ,E), run time is O( | V | + | E | )

g guaranteed to terminate if there is a solution

g first solution reported is the shortest
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Iterative Deepening DFS, Cont’d

for n = 1 .. ∞ {
perform DFS to maximum search depth n
if solution found, stop

}
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Iterative Deepening DFS

10 11

9

87

6

5
2
1

43
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Iterative Deepening DFS, Cont’d

g run time is O(b×d)), where
d = depth at which solution occurs
b = maximum number of branches at any node

g guaranteed to terminate if there is a solution

g first solution reported is the shortest
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Dijkstra’s Algorithm

Finds shortest paths from a given source to all targets
in an edge-weighted graph

∴ accounts for actual track lengths

Array d[v] ≡ distance from source to vertext v;
Initialize d[v] = ∞ for all v;
d[source] = 0;
Q = all unvisited nodes (priority queue);
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Dijkstra’s Algorithm, Cont’d

while (Q is not empty) {
u = getMin(Q);
foreach neighbor v of u {

d[u] = min(d[v], d[u]+length(u,v));
if the min is d[u]+length(u,v) {

include edge (u,v) in the
min spanning tree;

}
}

}
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If G = (V ,E), with efficient data structures, can be
implemented in O( | E | + | V | + log| V | )
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Floyd-Warshall Algorithm

Similar to Dijkstra’s algorithm, but computes shortest
paths between all pairs of vertices.

A dynamic programming algorithm:

Build up a 2-dimensional array path

path[i,j] = shortest path between nodes i and j, based on
nodes considered so far

Initially path[i,j] = edgecost(i,j) ∀ i,j and is undefined
if i and j do not share an edge
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Floyd-Warshall Algorithm, Cont’d

for k = 1 .. n {
for each (i,j) {

path[i,j] = shorter of path[i,j] and
concat(path[i,k],path(k,j))

}
}

Could be used to precompute all routes, rather than
running Dijkstra on the fly, leading to a potential time
savings.
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Floyd-Warshall Algorithm, Cont’d

If G = (V ,E), run time is O( | V | 3 ), i.e., ∼∼O( | V | ) for
each pair of vertices

But, precomputation fails if part of the track becomes
unusable, e.g., a switch is not working or a train is in
the way.

∴, you probably need on-the-fly calculation, at least as
a back up.
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Real-Time Scheduling Theory

We have discussed real-time constraints in the context
of Assignment 1, i.e., for the the cyclic executive,
which does not really use tasks.

Now we use real tasks and add priority.
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RT Scheduling Theory, Sources

Paper:

C.L. Liu and James W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard Real-
Time Environment”, Journal of the ACM 20:1, pp.
46–61, 1973.

Book:

Alan Burns and Andy Wellings, Real-Time Systems
and Programming Languages, Third Edition,
Addison-Wesley, Harlow, England, 2001
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Problem

Given a set of periodic tasks, t 1 , . . . , t m ,

with periods, T 1 , . . . , T m ,

execution times, c 1 , . . . , c m ,

and priorities, p 1 , . . . , p m ,

can every task meet its deadline?
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Assumptions

g Any ready, high priority task always preempts a
low priority task.

g Tasks do not block on each other.

g We are free to choose the priority of each task.
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Critical Instant

A critical instant for a task t occurs when every higher
priority task is at the beginning of its period.

This critical instant gives the worst case response time
from t’s viewpoint.

A global critical instant is the critical instant of the
lowest priority task.

That is, every task is at the beginning of its period.
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Theorem

If a set of task is schedulable at its global critical
instant, then it is schedulable.
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Rate-Monotonic Scheduling (RMS)
Algorithm

Here “rate” means “task period”

Assign priorities such that if T i < T j , then P i > P j .

That is, tasks with shorter periods get higher priorities.

Every task t i has a deadline D i , the time by which it
must finish.

For now, we take D i = T i ; later we take D i < T i
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Fundamentals of RMS

For RMS, every task will meet its deadline if:

i = 1
Σ
m

T i

c ihhh ≤ m(2 m
1hhh

− 1)

Note that
T i

c ihhh is the fraction of the CPU time used by

task t i .
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Fundamentals of RMS, Cont’d

As m→∞, m(2 m
1hhh

− 1) → 69% from above.

Therefore, if
i = 1
Σ
m

T i

c ihhh ≤ .69, then you are safe without

calculating the specific m(2 m
1hhh

− 1)
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Fundamentals of RMS, Cont’d

But, if
i = 1
Σ
m

T i

c ihhh > .69, …

you may still make it if m is small enough,

e.g. if m = 2, m(2 m
1hhh

− 1) = 2×(2
1⁄2 − 1) ∼∼ .828

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 63

Fundamentals of RMS, Cont’d

Even if the very conservative formula cannot promise
that you will find a schedule that permits every task to
meet its deadline, you may still make it …

if the particular configuration of c is and T is you have
is such that a schedule can be found by brute force.
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Fundamentals of RMS, Cont’d

Consider the case with one task, i.e., m = 1.

Then m(2 m
1hhh

− 1) = 1×(21 − 1) = 1

So one task is schedulable if that one task does not use
more than 100% of the CPU, i.e., if c 1 ≤T 1!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 65

Example 1

Priority Task T i c i T i

c ihhh
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

high 1 t 0 30 10 0.33
2 t 1 40 10 0.25

low 3 t 2 50 12 0.24iiiii
Total CPU Usage 0.82

The priorities are derived from the T is

3(2
1⁄3 − 1) ∼∼0.78

Since 0.82 > 0.78, the test fails.
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Brute Force?

0 10 20 30 40 50 60

overflow by 2 units

critical instant, every task at the beginning of its period

t2

t1

t0
10

10

10

10

10

Nope!
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Brute Force, Cont’d

This set of tasks may appear schedulable if you don’t
start at a critical instant …

but that doesn’t tell you much because you did not start
at the worst possible instant.
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Example 1’

Now change c 2 from 12 to 10.

Priority Task T i c i T i

c ihhh
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

high 1 t 0 30 10 0.33
2 t 1 40 10 0.25

low 3 t 2 50 10 0.20iiiii
Total CPU Usage 0.78

3(2
1⁄3 − 1) ∼∼0.78

Since 0.78≤0.78, the test succeeds.
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Brute Force!

0 10 20 30 40 50 60

overflow by 2 units

critical instant, every task at the beginning of its period

t2

t1

t0
10

10

10

10

10

Yep!
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Example 2

Priority Task T i c i T i

c ihhh
iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

high 1 t 0 20 5 0.25
2 t 1 40 10 0.25

low 3 t 2 80 40 0.50iiiii
1.00

3(2
1⁄3 − 1) ∼∼0.78

Since 1.00 > 0.78, the test fails.
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Brute Force?

0 10 20 30 40 50 60 70 80

critical instants
5 5 5 5

1010

5 15 5 15

t0

t1

t2
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Brute Force, Cont’d

Since 5+15+5+15 = 40, this set of tasks is schedulable
from critical instant to critical instant.

Therefore, it is schedulable.
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Sporadic Tasks

A task is sporadic if it is not strictly periodic.

Then T i represents a minimum period for task t i .

Deadline D i < T i ; the completion deadline is before
the earliest possible next execution.

For sporadic tasks, we use deadline-monotonic priority
assignment (DMPO) (“O” for “ordering”).
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DMPO

In DMPO, we assign priorities so that if D i < D j , then
P i > P j ,

i.e., to give highest priorities to tasks with the shortest
deadlines.
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Theorem

If a feasible priority assignment exists, then also
DPMO is feasible.

Equivalently:

If DMPO is infeasible, then so is every other priority
assignment.
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RMS is Special Case of DMPO

If D i = T i for all i, then DMPO reduces to rate-
monotonic scheduling.

Therefore, if D i = T i for all i and a feasible priority
assignment exists, then also rate-monotonic scheduling
is feasible.
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Computation of DMPO Worst Case

To compute the worst-case response time for DMPO:

Define response time R i for task t i as the time it takes
for t i to complete after t i has become ready.

A schedule is feasible if and only if R i < D i for all i.

Define interference time I i for task t i as the maximum
time spent executing higher priority tasks when t i is
ready.

Then R i = c i + I i .
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Worst Case, Cont’d

If t H is the highest priority task, then:

R H = c H

If t H 2 is the second highest priority task, then:

R H 2 = c H 2 + x c H

where x = the number of times t H is scheduled before
t H 2 completes.
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Worst Case, Cont’d

That is,

R H 2 = c H 2 +
R
J
J T H

R H 2hhhhh
H
J
J
c H

In general, for all t j with P j > P i , the maximum
interference from t j is:

R
J
J T j

R ihhh H
J
J
c j
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Worst Case, Cont’d

Let X i be the set of tasks with priority > P i .

Then:

R i = c i +
t j ∈X i

Σ
R
J
J T j

R ihhh H
J
J
c j

Solve for R i .
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Worst Case, Cont’d

How do we compute
R
J
J T j

R ihhh H
J
J
without knowing R i?

Solution: use a fixed-point computation.

Let ri
k denote the kth guess as to the value of R i .

Initial guess: ri
0 = c i . Then let

ri
n + 1 = c i +

t j ∈X i

Σ
R
J
J T j

ri
n

hhh
H
J
J
c j
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Worst Case, Cont’d

Fact: ri
0 ≤ ri

1 ≤ ri
2 . . . .

If, for any n, we obtain ri
n + 1 = ri

n , then take R i = ri
n ,

and we have a solution.

If, for any n, we obtain ri
n > D i , then also every

subsequent ri
k > D i , and we have no solution.
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Example 3

Priority Task T i c i D i
High t 1 7 3 7

Medium t 2 12 3 12
Low t 3 20 5 20

We let D i = T i for simplicity.
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Example 3, Cont’d

R 1 = c 1 = 3

r2
0 = c 2 = 3

r2
1 = c 2 +

j < 2
Σ

R
J
J T j

r2
0

hhh
H
J
J
c j = 3 +

R
J
J 7

3hh H
J
J
3 = 3 + 1×3 = 6
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Example 3, Cont’d

r2
2 = 3 +

j < 2
Σ

R
J
J T j

r2
1

hhh
H
J
J
c j = 3 +

R
J
J 7

6hh H
J
J
3 = 3 + 1×3 = 6

r2
2 = r2

1. ∴ R 2 = 6.
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Example 3, Cont’d
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 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 88



Example 3, Cont’d

R 1 = 3, R 2 = 6, and R 3 = 20

R i < D i ∀ i, ∴ this set of tasks is schedulable.
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Example 1 Revisited

with task subscripts upped by 1:

Priority Task T i c i T i

c ihhh

high 1 t 1 30 10 0.33
med 2 t 2 40 10 0.25
low 3 t 3 50 12 0.24iiiii

0.82

Recall that 0.82 > 3(2
1⁄3 − 1)(approx0.78), and the test

failed.
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Example 1, Cont’d

Response Time Calculation:

Start with:

R 1 = c 1 = 10
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Example 1, Cont’d
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Example 1, Cont’d
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∴, R 3 = 52 > T 3 = 50, a missed deadline.
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Example 1, Cont’d

BUT: R 3 is a solution. Therefore, task t 3 will
complete at time 52.

Rate-monotonic assignment is not schedulable, i.e.,
there is no schedulable priority assignment for these
tasks.

However, the CPU usage is only 82%. So there are
cycles left over.
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Dynamic Scheduling

In dynamic scheduling, priorities are allowed to change
over time.

Earliest deadline first (EDF) assigns priorities
dynamically so that the task with the earliest deadline
has the highest priority.
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Example 1 Re-Revisited
Priority Task T i c i T i

c ihhh

high 1 t 1 30 10 0.33
med 2 t 2 40 10 0.25
low 3 t 3 50 12 0.24iiiii

0.82

Recall that 0.82 > 3(2
1⁄3 − 1)(approx0.78), and the test

failed

and with DMPO, while solvable, t 3 missed its deadline
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EDF

EDF is feasible if

i = 1
Σ
m

T i

c ihhh ≤1

assuming D i = T i ,

as it is in this case.

The original priorities are meaningless in EDF.
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Example 1, Cont’d
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Example 4

Worst-case response time for EDF does not necessarily
occur at the critical instant, as in this example:

Task T i = D i c i T i

c ihhh

t 1 4 1 .25
t 2 12 3 .25
t 3 16 8 .5iiiii

1.00
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Example 4, Cont’d
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Example 4, Cont’d

At the critical instant at time 0, the response time of t 2,
R 2 = 4.

But at time 12, t 3 is still active, with a shorter
deadline, 16, compared to 24 for t 2.

But at time 12, t 1 preempts t 2, and t 2’s response time
R 2 = 7.

The response time for t i depends on the tasks with
deadlines earlier than that of t i .
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Tradeoffs
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Method When Space Effectiveness

Time’s Needed at in Meeting
Spent Run Time Deadlinesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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time tableiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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time tableiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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time of dataiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Tradeoffs, Cont’d

Which one to use?

Look at the data.

If total CPU utilization is small, e.g., < .5, don’t sweat
it, use RMS.

If not, then may have to play with system to see.

But, try RMS first, DMPO after, and then EDF only if
necessary.
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Application Project Requirements

Your application

g must track at least two trains,
g must include routing and collision detection,
g must display track layout on screen, showing the

location of all trains,
g must include a display of time that does not slow

down or speed up, that is, it does not gain or lose
ticks.

g must be deadline-oriented, the more real-time
content the better.
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Application Requirements, Cont’d

Your application may have extra features, such as
mouse, sound, etc.

However, having these are not as important as meeting
the real-time requirements.

In fact, their presence cannot make up for a failure to
meet any real-time requirement.
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Proposals
In class on 6 November.
g Make a short, 5–10 minute, presentation to the

class about your proposed application.
g Hand in a two-page proposal on paper.
g Your presentation must include a structure diagram

and may include other visuals.
g You may use the blackboard, the overhead

projector, or the data projector, or more than one.
g The instructor and class mates may ask questions

during the presentation.
g Each group member must speak.
g Start thinking now.
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Tracking Assignment 2

Your program
g must track two trains, but collision detection not

required yet,
g must recover if a train makes a wrong move, and
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Tracking Assignment 2, Cont’d

g must be able to send one train to an arbitrary
location on the track, assuming that
f there is no other train on the track,
f the location is defined by an arbitrary offset

from any switch or sensor,
f the route chosen must be the shortest or very

near to the shortest, and
f the command for this routing is

tr trainNumber speed destination.
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Scheduling for Task Interactions

g Most tasks do not run independently of each other.
A typical task blocks on another task.

g Under deadline- or period-oriented priority
assignments, a high priority task may Send to a low
priority task, leading to priority inversion.

g But if priorities are assigned to avoid priority
inversion, then tasks may end up not being
schedulable.

∴ Response time analysis must account for blocking
time.
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Task Interaction, Cont’d

Under priority inheritance, we can find an upper bound
for the time spent blocking for task t i

Let B i denote the maximum blocking time that task t i
can suffer.

Let K denote the number of critical sections in the
system, where a critical section is a Receive-to-Receive
cycle.
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Task Interaction, Cont’d

Then, B i =
j = 1
Σ
K

usage( j ,i) c( j), where

usage( j ,i) =

I
J
J
K
J
J
L
0

1

otherwise

at least one task with priority > p i

one task with priority < p i and

if section j is sent to by at least

and c( j) is the worst-case execution time for the jth
critical section
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Task Interaction, Cont’d

The intuition behind the definition of usage is:

Priority inversion happens when a lower priority task t l
is running when t i , with P i > P l is ready and wants to
run.

So, if t l is running as a result of priority inheritance,
then, t l is running at a priority p h , where P h ≥P i ,
because t l shares a resource rs with t h .
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Task Interaction, Cont’d

∴, for an inversion to occur, we need a resource to be
shared and two things to happen:

1. The resource must be used by some task with a
priority greater than or equal to P i ,

and

2. the resource must be used also by some task with
priority less than P i .
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Task Interaction, Cont’d

If we do not have 1, the resource is shared by two tasks
with priorities less than P i , and we cannot have
inversion on t i .

If we do not have 2, the resource is shared by only
tasks with priorities greater than or equal to P i , and the
resulting delay is included already in the interference
term, I i , calculated by the Σ .
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Task Interaction, Cont’d

Then, the response time for task t i is:

R i = c i + B i +
t j ∈X i
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Solve by fixed-point computation as before:
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Task Interaction, Cont’d

Note that the worst case B i may not actually be
achieved, e.g., if all tasks have the same period.
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