
CS452/652
Real-Time
Programming
Course Notes

Daniel M. Berry, Cheriton School of Computer Science
University of Waterloo

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 1

Real-Time Java

Java was originally designed to run embedded systems.

However, its core specification does not address real-
time concerns.

In particular, its reliance on garbage collection (GC)
for memory management precludes serious use of Java
for programming RT systems.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 2

Real-Time Specification for Java

The issues that make RT Java difficult are:

g asynchronous events, interrupts, timers, and clocks

g scheduling, synchronization, communication

g garbage-collected memory management, lack of
direct access to physical memory

g lack of direct access to physical devices

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 3

Scheduling

Ordinary Java threads (Java-ese for “tasks”) have
priorities, but the system does not necessarily always
choose the highest priority thread, i.e., priorities are
only advice to the scheduler.

Even a high priority thread gets delayed for an
unbounded amount of time when GC occurs.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 4

Three Kinds of Threads

In an attempt to get control over thread scheduling in
the presence of potential GC, RT Java has three kinds
of threads:

1. No heap real-time (NHRT) threads

2. Real-time (RT) threads

3. Regular threads

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 5

No Heap Real-Time Threads

g have no access to the heap; ∴ they cause no GC

Remember that GC is triggered when a heap
allocation, via a new, fails because there is not
enough free memory to do the allocation.

g real-time scheduling: they are scheduled strictly
according to their priorities

g for threads with the tightest deadlines

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 6

Real-Time Threads

g RT scheduling: they are scheduled strictly
according to their priorities.

g have access to heap; ∴ they can cause GC

g for threads that can tolerate delay caused by GC

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 7

Regular Threads

as in ordinary Java

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 8

Required for RT Threads

g 28 fixed priority levels

g preemptive scheduling, as in your kernels

g avoid priority inversion via priority inheritance,
which can be implemented using subclassing

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 9

Thread Communication

If a high-priority NHRT thread attempts to lock an
object held by a lower-priority RT or regular thread,
then the holding thread’s priority is boosted to that of
the high-priority NHRT thread, in a priority inheritance
move.

But, if the holding thread is delayed by GC, then so is
the NHRT thread. This is very BAD!

∴, we need a way for NHRT threads to communicate
with RT threads and regular threads without risk of
having wait for GC.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 10

Wait-Free Write Queue

Allows communication from a RT thread to a non-RT
thread:

WriteRead

Real TimeNon Real Time

The write side is non-blocking and therefore can suffer
no GC delays.

The read side is blocking.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 11

Wait-Free Write Queue, Cont’d

An NHRT thread can send data to an RT thread or a
regular thread by writing to one of these wait-free write
queues. The recipient task may block when it tries to
read.

The queue data structure is statically allocated (Why?)
and is therefore limited in size.

Therefore, data may be lost if queue is full, as old data
get overwritten.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 12

Garbage Collection

Several approaches, which are independent of RT
considerations:

g mark and sweep

g reference counting

g copying

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 13

Roots of GC

Garbage collectors’s job is to is to determine what is
accessible so that the stuff that is not accessible can be
turned into free memory to be used for future
allocations.

Accessible data are those that may be reached by any
chain of pointers originating at a root.

The roots is the minimal set of pointer variables
allowing the non-terminated threads to reach all of
their data.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 14

Roots of GC, Cont’d

If you have only one thread, the root could be the
pointers that are normally in a task descriptor.

If you have multiple threads, the roots could be
pointers to all non-terminated threads.

If you have multiple threads, the root could be the
pointer to the thread table.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 15

Mark-and-Sweep GC

Mark:

Initially, every root object is found
but not yet followed;

Foreach object x not yet followed {
Mark whatever x points to as in use;
Do the same for any object found within x;

}

Requires a stack of objects found but not yet followed.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 16

Mark-and-Sweep GC, Cont’d

Sweep:

Scan the heap:
Reclaim all unmarked memory;
Unmark all marked memory;

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 17

Reference Counting

For each object in memory, track how many variables
point to it.

Need to update reference counts on every pointer
assignment, decreasing the count of the object pointed
to by the old value and increasing the count of the
object pointed to by the new value.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 18

Reference Counting, Cont’d

If, as an object’s reference count is decreased, the
count arrives at zero, then reclaim the object and
decrement the reference count of every object the
reclaimed object points to. This may recurse arbitrarily.

But, reference counting fails to notice that a set of
objects that point only to each other is inaccessible,
because each object’s reference count is permanently at
least one.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 19

Copying

g Split the heap into two halves: OLD and NEW.
g Allocate memory from OLD, until it fills up.
g Then copy all accessible objects into NEW,

compressing to one end of NEW and thus
squeezing out garbage.

g Update all references to point to the new location of
the referenced object.

g Exchange OLD and NEW.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 20

Reference Counting

Reference counting suffers huge space and time
overhead:

g It requires two count updates with each pointer
assignment, plus a check for zero.

g If the count of any object goes to zero, an
unbounded amount of additional count updates may
be triggered.

g It requires one counter for each object that can hold
the maximum possible count.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 21

Mark-and-Sweep and Copying

These generally cannot happen while the program is
running and the status of a pointer can change under
the garbage collector’s nose.

Therefore, the program must wait an unbounded
amount of time for the garbage collector to finish.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 22

Conclusion

Garbage Collection is a HUGE problem for RT
systems.

This is why your programs have stack allocation of
procedure activation records and static allocation of
global data structures.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 23

RT GC

How can we put a bound on the amount of time spent
on GC?

This is NOT a fully solved problem, to the extent that
usually the solution is to make sure that GC is never
needed, e.g., by having stack allocation of procedure
activation records and static allocation of global data
structures.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 24

Java Itself

Java has two kinds of variables or objects:

g local variables, for blocks, functions, and methods;
these are allocated upon entry to the declaring
block, function, or method and are deallocated
upon exit from that declaring block, function, or
method; implemented using pushing into and
popping from a stack of activation records

g new objects, in the heap

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 25

RT Java

RT Java has three types of memory for the new
objects:

1. immortal memory

2. scoped memory

3. heap memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 26

Immortal Memory

g shared among all threads

g never garbage-collected

g reclaimed only when the whole program terminates

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 27

Scoped Memory

g for objects with well-defined lifetimes; each scoped
object is allocated in a region tied to a block, i.e., a
scope; thus the object’s lifetime is that of the block,
because exit from this block by the last task causes
reclamation of all objects in the region tied to the
block

g similar to stack allocation in C or C++

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 28

Scoped Memory, Cont’d

g regions are explicitly entered and exited by threads,
reference counted.

g regions, not objects, are reference counted, and the
count of a region counts not references to the
region, but the number of threads that have entered
the region but have not yet exited the same; thus
there are no cycles invalidate reference counting.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 29

Heap Memory

All other Java objects, which are garbage collected.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 30

Running a Thread in a Scope

ScopedMemory lt = new LTMemory(min,max)
lt.enter(new Runnable(){

public void run(){
/* inside the scope */

}
});
/* outside the scope */

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 31

Threads in Scopes, Cont’d

Other memory classes include

g VTMemory: scoped memory with potentially
variable time allocation as opposed to guaranteed
linear time allocation for LTMemory

g HeapMemory

g ImmortalMemory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 32

Threads in Scopes, Cont’d

Note that you may use any appropriate thread object as
the argument for enter including

g a previously created one and

g the this of a thread object.

By “appropriate”, I mean that sending a NHRT thread
into a HeapMemory object is not appropriate.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 33

Rules

g A heap object can reference any heap object or any
immortal object, but not any scoped object.

g An immortal object can reference any immortal
object, any heap object, but not any scoped object.

g A scoped object can reference any immortal object,
any heap object, or any scoped object in the same
or a larger scope.

g A local variable can reference any immortal object,
any heap object, or any scoped object in a region
that is referenced by the thread that owns the local
variable and is in the same or a larger scope.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 34

Rules, Cont’d

Smallest Scope

Largest Scope

ScopeC

ScopeB

ScopeA

Scope4

Scope3

Scope2

Scope1

ImmortalHeap

compile time
language, detected

Illegal and not
allowed in the

Illegal and
detected at run time

Legal

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 35

Rules, Cont’d

These rules are enforced at assignment time at run
time.

They ensure that no pointer points to an object that can
disappear before the pointer disappears.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 36

Rules, Cont’d

Assuming that upward is increasing addresses, each
pointer consists of three parts:

1. the pointer itself
2. its scope, e.g.,

a pointer to the base of the activation record
defining the scope if the object is scoped and
0 if the object is immortal or in the heap.

3. its thread, e.g.,
a pointer to the base of the thread owning the
pointed to object if the object is scoped and
0 if the object is immortal or in the heap.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 37

Rules, Cont’d

A pointer assignment is legal IF

g the target of the pointer has a 0 scope and 0 thread

OR

g the place to which the pointer is being copied has a
scope ≥ than that of the target and has a thread = to
that of the target.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 38

Rules, Cont’d

The only kind of object o that could disappear, leaving
a dangling pointer that used to point to o is is a scoped
object in a scope that is being exited by the last of its
tasks.

This dangling pointer could be in only:
g an immortal or heap object
or
g in a longer lasting scoped object

So, any assignment that can produce a potentially
dangling pointer is outlawed, as in Algol 68.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 39

Violation of Rules

I will show you a RT Java program that I believe
behaves like this C program:

{int p*;
…
{int i;

…
p = &i; /* causes upward pointer */

}
…

}

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 40

Violation of Rules, Cont’d

?????

p

i

p

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 41

Violation of Rules, Cont’d

{ScopedMemory ltOuter =
new LTMemory(1024,1024)

ltOuter.enter(new Runnable(){
public void run(){T p;
ScopedMemory ltInner =

new LTMemory(1024,1024)
ltInner.enter(new Runnable(){
public void run(){T i = new T;

p = i; /* not allowed */
}}); /* inner scope */

}});} /* outer scope */

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 42

My Opinion of RT Java

This stuff is incredibly complex.

I cannot believe that any one has written any real RT
system using this stuff.

I could not even find examples in the Web of illegal
programs, and I am not sure that my example is right.

If I were using RT Java, I would use only immortal
memory and NHRT threads and be done with it.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 43

No Scoped Memory

If there is no scoped memory, can the standard GC
procedures be optimized?

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 44

Generational GC

Assumptions based on observations:

g The longer an object lasts, the less likely it is to die.

g So, the older an object gets, the less often it should
be scanned.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 45

Generations

So divide the heap into generations:

.

Youngest ObjectsOldest Objects

0G2G 1G3GnG

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 46

On GC

Do Mark-and-Sweep GC or Copying GC on only G
0
.

The roots of the GC include:

g program variables

g pointers into G
0

from older generations

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 47

On GC, Cont’d

If there are too many pointers into G
0

from older
generations, then the GC may be too slow, …

but these older objects pointing to newer objects tend
to be rare;

however, the algorithm must remember which objects
these older objects pointing to newer objects are.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 48

On GC, Cont’d

If an object survives a few GC iterations, move it to the
next higher generation.

As higher generations fill up, GC them as well, but that
should be infrequent.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 49

Incremental GC

g Allow the garbage collector to be interleaved with
the main program, called the mutator because it
keeps changing pointers and what is accessible.

g Collect a little bit of garbage at a time.

If the collector collects garbage too slowly, the mutator
has to wait for the collector to free more space.

If the collector collects garbage too fast, the collector
may hog valuable cycles, causing the mutator to miss
its deadlines.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 50

Equilibrium

So an equilibrium must be reached, one cell allocated,
one cell freed.

Paper: Henry C. Baker, Jr., “List Processing in Real
Time on a Serial Computer”, Communications of the
ACM, 21:4, pp. 280–294, April, 1978

This paper gives a real-time incremental GC algorithm
and a significant part of the paper describes the
conditions under which equilibrium is reached and
maintained.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 51

Preliminaries

Two important concepts are used in Baker’s algorithm:

g Updating pointers

g Read barrier

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 52

Updating Pointers

The literature often calls updating pointers as
“forwarding pointers” because of the forwarding
addresses, i.e., forwarding pointers, involved, but the
act itself should be called “updating” as updating its
address for a client is what an organization does when
the post office notifies it of a client’s forwarding
address.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 53

Updating Pointers, Cont’d

Updating p: given an instance of a pointer p that points
into a datum d in OLD, make p point to d’s copy in
NEW.

There are three cases:

1. d has not yet been copied to NEW.

2. d has already been copied to NEW.

3. p is not a pointer at all or d is in memory not
subjected to GC.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 54

Updating Pointers, Cont’d

1. If d has not yet been copied to NEW, then d is
copied into NEW at the place pointed to by next; next
is incremented by the size of d; the address of this new
copy of d in NEW is put into the first word of d in
OLD; change p to be this forwarding pointer.

(It’s OK to overwrite the OLD d with the forwarding
pointer since d’s real value as already been saved in the
NEW copy!)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 55

Updating Pointers, Cont’d

2. If d has already been copied to NEW, then the first
word of d contains a forwarding pointer pointing to d’s
copy in NEW; change p to be this forwarding pointer.

(Since no value in d could point into NEW, this
forwarding pointer cannot be part of d’s original
value.)

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 56

Updating Pointers, Cont’d

3. If p is not a pointer at all or d is in memory not
subjected to GC, then do nothing.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 57

Read Barrier

Many a GC algorithm has a write or read barrier, of
something that must be done by the mutator every time
it writes or reads, respectively.

In a read barrier, generally whenever the mutator reads
a datum, it must check something about that datum and
then possibly do something, often a function of the
value of the datum.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 58

Read Barrier, Cont’d

For Baker’s algorithm, the read barrier is that if what is
read from the datum is a pointer pointing to OLD, the
pointer in the datum must be updated, as described
above.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 59

Baker’s Algorithm

Baker’s algorithm is based on Copy GC, and uses the
same OLD and NEW half memories.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 60

OLDNEW

zzz
CM

nextavailable

copied & updatedfreeallocated

other end of memoryone end of memoryother end of memory

1. GC begins when the mutator’s attempt to allocate in
NEW fails due to insufficient free space.

allocated

available

OLDNEW

zzz
CM

next

copied & updated

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 61

allocated

available

OLDNEW

zzz
CM

next

copied & updated

other end of memoryone end of memoryother end of memory

2. The mutator is blocked and the collector is
awakened.

zzz

allocated

available

OLDNEW

CM

next

copied & updated

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 62

zzz

allocated

available

OLDNEW

CM

next

copied & updated

other end of memoryone end of memoryother end of memory

3. OLD and NEW are swapped.

scanned
next available

zzz

NEWOLD

MC

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 63

scanned
next available

zzz

NEWOLD

MC

other end of memoryone end of memoryother end of memory

4. Every root pointer is copied to one end of the NEW
space, at the place indicated by next, and next is
incremented by the size of the roots. (Alternatively, in
addition, each root pointer is updated.)

other end of memory one end of memory other end of memory

C

OLD NEW

available
scanned

next

copied

roots M
zzz

free

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 64

other end of memory one end of memory other end of memory

C

OLD NEW

available
scanned

next

copied

roots M
zzz

free

5. Then the mutator is made ready, with the root
pointers not yet updated and no other accessible data
copied to NEW.

Mroots

copied

next
scanned

available

NEWOLD

C

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 65

Mroots

copied

next
scanned

available

NEWOLD

C

other end of memoryone end of memoryother end of memory

6. Every call by the mutator to allocate results in
updating a few more pointers, and memory for the
allocate is taken from the other end of NEW, at the
place indicated by available and available is
decremented by the size of the allocation.

other end of memory one end of memory other end of memory

C

OLD NEW

M

next
scanned

copied

copied & updated

allocated

available

free

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 66

Read Barrier

read barrier : If the mutator ever reads a pointer p that
still points into OLD space, then update is done with p,
possibly copying the target of p from OLD to NEW,
and in any case changing p to point to the NEW copy.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 67

Invariants

other end of memory one end of memory other end of memory

C

OLD NEW

M

next
scanned

copied

copied & updated

allocated

available

free

Before where scanned points, every pointer points to
NEW.

Between where scanned points and where next
points, any object in NEW can contain pointers
pointing to OLD.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 68

Invariants, Cont’d

other end of memory one end of memory other end of memory

C

OLD NEW

M

next
scanned

copied

copied & updated

allocated

available

free

Between where next points and where available
points is free space.

After where available points are all objects allocated
since the last swap of OLD and NEW.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 69

other end of memory one end of memory other end of memory

C

OLD NEW

M

next
scanned

copied

copied & updated

allocated

available

free

7. Every time the mutator allocates a word, scanned
is incremented by at least one word, i.e., at least one
more pointer is updated.

other end of memory one end of memory other end of memory

C

OLD NEW

M

copied & updated

availablenext
scanned

allocatedcopied free

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 70

other end of memory one end of memory other end of memory

C

OLD NEW

M

copied & updated

availablenext
scanned

allocatedcopied free

8. This updating occurs until scanned = next, and
then the collector blocks.

free

zzz

allocatedcopied & updated

scanned
availablenext

M

NEWOLD

C

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 71

free

zzz

allocatedcopied & updated

scanned
availablenext

M

NEWOLD

C

other end of memoryone end of memoryother end of memory

9. The mutator continues until the difference between
next and available is not enough for the next allocate
and thus, NEW has filled up. We have step 0 again, but
with the picture flipped about the center.

allocatedcopied & updated

next available
zzz

M

NEWOLD

C

other end of memoryone end of memoryother end of memory

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 72

Note that any object allocated after where available
points, while the collector is running is never scanned,
i.e., its pointers are not updated, because they do not
need to be.

∴, Baker’s algorithm does not copy any more data
than were alive at the swap of spaces.

∴, Copying of accessible data from OLD to NEW
cannot fill up NEW unless there is absolutely no
garbage in OLD.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 73

Overhead of Baker’s Algorithm

The biggest cost of Baker’s algorithm is the read
barrier. Each read potentially costs an update, which
may include a copying of an arbitrarily long datum.

If 10% of the instructions are fetches from a heap
object, and each fetch requires two instructions to
determine whether the fetched value is a pointer
pointing into OLD, then the overhead of maintaining
the read barrier is at least 20%

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 74

Final Exam

Monday 17 December, 4:00 pm–6:30 pm, RCS 205

g all aspects of your kernel and application; you
might be asked to implement a new kernel feature,
a new project feature, or modify an existing one

g scheduling theory
g scheduling in RT Java
g scoped memory
g garbage collection: mark-and-sweep, reference

counting, copying, generational, incremental

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 75

Final Project

The documentation for the project is due at 4:30pm on
30 November, electronically with submit and hard
copy of non-code in the lock box.

The demo of project is Tuesday 4 December, 8:30am,
in the train room.

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 76

Final Project, Cont’d

The final version of the code for the project is due
Tuesday 4 December at 4:30pm electronically with
submit.

PS:
Please have taken a bath before the demo, especially if
you have been coding 24/7 right up to the point of the
demo!

 2007 Daniel M. Berry Real-Time Programming: Trains Pg. 77

