Recall that a decision problem is a parameterized problem with a yes/no answer for each instance.

We say a decision problem is *solvable* if there is an algorithm (that is, a Turing machine) that unerringly solves it.

Some decision problems about CFL’s are solvable.

For example, “Given a CFG G, is $L(G) = \emptyset$?”

To solve it, apply the algorithm for removing all useless symbols from G. If any symbols remain, then $L(G) \neq \emptyset$.
Unfortunately, many of the problems that we really want to solve about CFL’s are unsolvable. These include

- Given CFG $G = (V, \Sigma, P, S)$, is $L(G) = \Sigma^*$?
- Given CFG’s G_1 and G_2, is $L(G_1) = L(G_2)$?
- Given CFG’s G_1 and G_2, is $L(G_1) \cap L(G_2) = \emptyset$?
- Given CFG G, is $L(G)$ regular?
- Given CFG G, is G ambiguous?
A configuration summarizes all the information needed to continue the execution of a Turing machine. It includes the current state, the current contents of the tape, and an indication of which cell is currently being scanned. Formally, a configuration is of the form xqy, where

- xy is the current contents of the tape up to the last unreached cell;
- q is the current state; and
- the TM is currently scanning the first symbol of y.

Note: there are other ways to specify a configuration. What is important is that one can computably extract the three pieces of information from the specification.
A valid computation of a TM is a list of configurations, corresponding to consecutive moves of the TM, starting with the initial configuration, and ending in the halting state.

The obvious way to encode a valid computation is

\[C_0 \# C_1 \# C_2 \# \cdots \# C_n, \]

where each \(C_i \) is a configuration and \(\# \) is a new delimiter symbol.

However, we are free to encode it anyway we like, provided we can computably recover all the information.
Comparing consecutive configurations

Notice that C_{i+1} differs from C_i in at most three positions next to each other: the symbol that is changed, the state, and the movement of the state:

\[
\ldots qA \ldots \text{ becomes } \ldots Br \ldots \quad \text{(right move)}
\]
\[
\ldots AqB \ldots \text{ becomes } \ldots rAC \ldots \quad \text{(left move)}.
\]

Our goal is to permit a PDA to check whether a computation is valid or invalid.

But a PDA can’t compare two consecutive configurations because

\[
\{xx : x \in \{0, 1\}^*\}
\]

is not a CFL.

If we change the definition of computation, however, then a PDA can check it.
Redefining a computation

Here’s how: we redefine a computation to be

\[C_0 \# C_1^R \# C_2 \# C_3^R \cdots \# C_{n-1} \# C_n, \]

if \(n \) is even and

\[C_0 \# C_1^R \# C_2 \# C_3^R \cdots \# C_{n-1} \# C_n^R, \]

if \(n \) is odd.

Now a PDA can check if \(C_i \# C_{i+1}^R \) corresponds to two consecutive moves of a TM.

For example, if a “right” move is made by the TM, we have to check that \(C_i = xqAy \) and \(C_{i+1}^R = y^R rBx^R \) and \(\delta(q, A) = (r, B, R) \) is a move of the TM.
Checking a computation

To do so we push symbols on the stack until we see a state q in the input. Then we store q and the symbol A that follows, and “look up” $\delta(q, A) = (r, B, R)$. We then push rB onto the stack, and continue pushing symbols from the input onto the stack until $\#$ is seen. Then we pop the stack and compare it to the rest of the input.

Similarly for left and stationary moves.

Now we can prove:

Theorem. The following problem is unsolvable: given two PDA’s M_1 and M_2, does $L(M_1) \cap L(M_2) = \emptyset$?
The key idea is that *the set of valid computations of a TM can be written as the intersection of two CFL’s.*

Theorem. The following problem is unsolvable: given two PDA’s M_1 and M_2, does $L(M_1) \cap L(M_2) = \emptyset$?

Proof. We will reduce from the following decision problem: given a TM M, is $L(M) = \emptyset$? You should remember from CS 360/365 that this decision problem is unsolvable.

Given the TM M, we create two PDA’s as above. On input a computation, M_1 checks $C_{2i+1} \# C_{2i+2}$ is correct for all i; and M_2 checks that $C_{2i} \# C_{2i+1}^R$ is correct for all i.
Furthermore, we arrange it so that M_2 also checks that the first configuration is an initial configuration of the form q_0Bx for some x, and either M_1 or M_2 (depending on parity) checks that the final configuration is a halting configuration.

So $x \in L(M_1) \cap L(M_2)$ if and only if x is a valid computation.

Thus $L(M_1) \cap L(M_2) = \emptyset$ iff $L(M) = \emptyset$.

This completes the reduction.

Corollary. The following decision problem is unsolvable: given CFG’s G_1 and G_2, is $L(G_1) \cap L(G_2) = \emptyset$?
Now we turn to a more interesting problem: the universality problem for PDA’s. This amounts to checking, for a PDA with input alphabet Δ, whether $L(P) = \Delta^*$.

We use the same idea with computations we used before. Now, though, instead of valid computations we focus on invalid computations: these are all strings that do not represent a valid computation.

The key insight is that the set of invalid computations of a TM is a CFL.
How can a string be an invalid computation?

▶ It could start wrong (something other than \(q_0 B x \# \)).
▶ It could end wrong (something other than \# y h z \)).
▶ It could have two consecutive \# symbols.
▶ It could be that if part of the input looks like \# y \# z \# then it is not the case that \(y = C_i, \ z = C_{i+1}^R \) (or \(y = C_i^R, \ z = C_{i+1} \), depending on parity)

We can make individual PDA’s for each of these. For the last one, we use two PDA’s, one that checks even \(i \) and one odd \(i \).

Lemma. The set of invalid computations of a TM is a CFL.
Theorem. The following problem is unsolvable: given a PDA P with input alphabet Δ, is $L(P) = \Delta^*$?

Proof. We reduce from the problem, given a TM M, is $L(M) = \emptyset$?

Given $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, h)$, we create a PDA P as above, accepting the set of all invalid computations of M. This PDA P has input alphabet $\Delta := \Sigma \cup \Gamma \cup \{#\}$.

Then every string in Δ^* is an invalid computation iff $L(M) = \emptyset$.

This completes the reduction.
Two corollaries

Corollary. The following problem is unsolvable: given a CFG $G = (V, \Delta, P, S)$, is $L(G) = \Delta^*$?

Corollary. The following problem is unsolvable: given two CFG's G_1 and G_2, is $L(G_1) = L(G_2)$?

Proof. Take G_2 to be the grammar that generates Δ^*.
Theorem. The following problem is unsolvable: given a CFG G, is $L(G)$ regular?

Proof. We reduce from the problem, given CFG G, is $L(G) = \Sigma^*$?

Given a CFG G, we create a CFG G_2 for the language

$$L_1 := L_0 \# \Sigma^* \cup \Sigma^* \# L(G),$$

where L_0 is any nonregular context-free language, such as

$$\{a^n b^n : n \geq 0\}.$$

We claim $L(G_2)$ is regular iff $L(G) = \Sigma^*$.

If $L(G) = \Sigma^*$, then $L_1 = \Sigma^* \# \Sigma^*$, which is regular.

If $L(G) \neq \Sigma^*$, then there must be a w such that $w \notin L(G)$. Then $L_1/\#w = L_0$, which is not regular. So L_1 is not regular.
We have seen that the decision problem for CFG G,

Is $L(G)$ regular?

is not solvable.

But suppose we have a grammar G and you know (somehow) that $L(G)$ is regular. Can you determine which regular language it is?

More formally, given G such that $L(G)$ is regular, can one compute a DFA A such that $L(G) = L(A)$?

This is an example of a “birdie” problem, because you imagine that you are given G and a “little birdie” has told you that $L(G)$ is regular.
Theorem. The birdie problem: given G and M, with $L(G)$ regular, compute DFA A such that $L(G) = L(A)$, is unsolvable.

Proof. Let M be any TM such that $L(M)$ is recursively enumerable but not recursive. (For example, we could take M to recognize the language $\{\langle T \rangle : T$ is a TM such that $L(T) \neq \emptyset \}$.) Then there cannot be an algorithm that, for all x, decides whether $x \in L(M)$.

Assuming the birdie problem is solvable, we will produce such an algorithm. This will give us a contradiction.
We know there is a grammar $G' = (V, \Delta, P, S)$ such that $L(G')$ is the invalid computations of M, and we can compute this from M.

For each x, define $F_x = \{q_0By\#z : y \neq x \text{ and } z \in \Delta^*\}$.

Clearly each F_x is regular, and we can easily compute a DFA B_x recognizing F_x.

Given B_x and G', we can create a CFG G_x such that $L(G_x) = \text{invalid}(M) \cup F_x$.
We now claim $L(G_x)$ is regular:

- For if $x \in L(M)$, then $L(G_x) = \Delta^* - \{w\}$, where w is the accepting computation of M on x.
- If $x \not\in L(M)$, then $L(G_x) = \Delta^*$.

Now suppose there is a computable way to compute a DFA A such that $L(A) = L(G_x)$. Given such a DFA, we can determine whether $L(A) = \Delta^*$ using standard techniques. Hence we can computably determine if $x \in L(M)$.