let \(X, Y \) nonempty word such that \(X, Y \) don't prefix each other (eg: \(X = 1 \), \(Y = 0 \))
define infinite sequence \(\{ T_k \} \) where \(T_k = \begin{cases} X & \text{if } k = 1 \\ (T_k)^k Y & \text{if } k > 1 \end{cases} \)
easy to see that \(T_i \) prefix \(T_j \) when \(i \leq j \)
given arbitrary \(\text{int } e \geq 2 \) , \(\text{int } p \geq 1 \) (given arbitrary position \(p \) and power \(e \))
let \(q = \min \{ m | |T_m| > p \} \) // \(T_q \) include position \(p \)
if \(q \leq e \) : let \(U = T_e [1, p-1] \), \(V = T_q \cdot T_e [1, e+1] \) (\(T_e \) includes position \(p \) since \(e \geq q \))
\[T_{e+1} = (UV)^{e+1} Y \Rightarrow U^* T_{e+1} = (UV)^e V Y \text{ as wanted} \]
otherwise \(q > e \) : let \(U = T_q [1, p-1] \), \(V = T_q \cdot T_q [1, q] \)
(\(T_e \) can only handle limited size of \(p \), therefore use longer \(T_q \) when position \(p \) exceed \(T_q \))
\[T_{q+1} = (UV)^{q+1} Y \Rightarrow U^* T_{q+1} = (UV)^q V Y \text{ as wanted} \]
therefore, \(T_{\max(qe)+1} \) has a power of \(e \) start at position \(p \)
assume \(Tw \) is periodic, let \(z \) be the shortest period, hence \(Tw = z^w \)
since \(T_{121} \) prefix \(Tw \), then \(T_{121} = (T_{121})^* Y = z^w Y \)
by definition of \(T \), \(X \) prefix \(T_i \) \(\forall i \), hence \(X \) prefix \(z^w \)
if \(|Y| \leq |X| \) : since \(Y \) not prefix \(X \), \(Y \) not prefix \(z^w \)
 hence \(T_{121} = z^{12 |12|} Y \) not prefix \(z^w \)
 else \(|Y| > |X| \) : since \(X \) not prefix \(Y \), \(Y, X \) mismatch in first \(|X| \) bits
 hence \(Y \) not prefix \(z^w \), \(T_{121} = z^{12 |12|} Y \) not prefix \(z^w \)

\(T_{121} \) not prefix of \(z^w \) contradiction with assumption ,
Therefore, \(Tw \) is aperiodic

hence, \(T_w \) which is an aperiodic infinite word, has an arbitrary large power at arbitrary position.