Theorem 1. There exists an infinite word over a 3 letter alphabet avoiding the pattern xx' where x' is a conjugate of x.

Proof. Let $x \in \{0, 1, 2\}^+$ and x' be a conjugate of x. Since x and x' are conjugates, there exist words u non-empty and v possibly empty such that $x = uv$ and $x' = vu$. If $v = \epsilon$ then $xx' = u^2$, and if $v \neq \epsilon$ then $xx' = uv^2u$. In both of these cases xx' contains a non-empty square as a factor. But we know that there is an infinite word over a 3 letter alphabet that avoids squares (Theorem 2.5.2). Therefore, there exists an infinite word over a 3 letter alphabet avoiding the pattern xx' where x' is a conjugate of x. \qed